首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.  相似文献   

2.
通过检测母体外周血中胎儿游离DNA(cffDNA)的SRY基因,确定胎儿性别,可评估胎儿性连锁遗传病的发病风险,降低病儿出生率.本研究建立了高灵敏、高特异、闭管检测不易污染的实时荧光PCR偶联核酸侵入反应方法用于SRY基因的检测.通过优化反应体系中的检测探针浓度、FEN1酶用量、Taq酶用量及预扩增退火温度,确定了最佳的反应条件,即检测探针浓度为250 nmol/L、FEN1酶用量为7.5 U、Taq酶用量为0.5 U、预扩增退火温度为67℃.在最佳反应条件下,实现对含量低至4%(4 copies/μL)的模拟样本的检测,并成功检测两例孕期分别为9周和10周的临床实际样本.结果表明,所建立的方法可用于母体外周血cffDNA的SRY基因检测,为临床开展基于SRY基因的无创产前诊断提供了新方法.  相似文献   

3.
A universal hepatitis B virus (HBV) DNA detection kit is appealing for the worldwide diagnosis and monitoring of the treatment of different mutant types of hepatitis B virus. A sensitive and reproducible real-time PCR assay based on the universal molecular beacon (U-MB) technique was developed for the detection of HBV DNA in serum. The U-MB probe used in the assay has no interaction with the HBV DNA sequence. The U-MB technique not only reduced the cost of HBV detection but also had the potential for the development of a universal detection kit for different mutant HBV types and other DNA systems. To demonstrate its clinical utility, 90 serum samples were analyzed using the U-MB real-time PCR method. In the experiments we found that several crucial factors needed to be considered in the primer design, such as the avoidance of formation of severe primer–dimer and primer self-hairpin structure. With the optimized primer sets, satisfactory results were obtained for all the tested samples. We concluded that this assay would be an excellent candidate for a universal HBV DNA detection method. Principle of the U-MB real-time PCR method for HBV DNAdetection  相似文献   

4.
An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06?×?103 copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.
Figure
?  相似文献   

5.
For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LODabs) ≤ ten target copies was proven in hexaplex format. A sensitivity ≤ ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.  相似文献   

6.
Food-allergic individuals have to strictly avoid the offending food because no causative immunotherapies are available. Thus, reliable labelling of allergenic ingredients or precautionary labelling of cross-contacts with potential allergens is of major importance. Verification of compliance with labelling requirements and identification of cross-contacts demand test methods that enable the specific and sensitive detection of the analyte. Brazil nut (Bertholletia excelsa) is such a food commodity with allergenic potential. We describe the development of a novel qualitative real-time polymerase chain reaction (PCR) specific for Brazil nut DNA and its comparison with a qualitative commercially available lateral flow device (LFD) that detects Brazil nut protein. Specificity was investigated with 58 foods, and no false-positive reactions were observed in real-time PCR. The sensitivity was investigated with spiked chocolate and incurred dough samples as well as cookies baked thereof. The simultaneous spiking of matrices with identical amounts of Brazil nut and peanut between 5 and 100,000 mg/kg allowed the verification of the spike quality with two peanut-specific enzyme-linked immunosorbent assay. The real-time PCR detected Brazil nut in all three matrices down to the lowest investigated spike level of 5 mg/kg. The real-time PCR results from the analysis of 15 retail samples were confirmed by LFD results and were in concordance with the labelling of products. The real-time PCR showed unparalleled specificity, and primary data indicated potentially quantitative features in spiked and retail samples. Because of entirely reproducible chemistry of this real-time PCR, this is the first generally available Brazil nut-specific detection method with an appropriate sensitivity to help avoid severe allergic reactions for Brazil nut-allergic individuals.  相似文献   

7.
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.  相似文献   

8.
Huang X  Hou L  Xu X  Chen H  Ji H  Zhu S 《The Analyst》2011,136(20):4254-4259
Traditional real-time polymerase chain reaction (PCR) requires a purified DNA sample for PCR amplification and detection. This requires PCR tests be conducted in clean laboratories, and limits its applications for field tests. This work developed a method that can carry out DNA purification, amplification and detection in a single PCR tube. The polypropylene PCR tube was first treated with chromic acid and peptide nucleic acids (PNA) as DNA-capturer were immobilized on the internal surface of the tube. Cauliflower mosaic virus 35S (CaMV-35S) promoter in the crude extract was hybridized with the PNA on the tube surface, and the inhibitors, interfering agents and irrelevant DNA in the crude extract were effectively removed by rinsing with buffer solutions. The tube that has captured the target DNA can be used for the following real-time PCR (RT-PCR). By using this approach, the detection of less than 2500 copies of 35S plasmids in a complex sample could be completed within 3 hours. Chocolate samples were tested for real sample analysis, and 35S plasmids in genetically modified chocolate samples have been successfully identified with this method in situ. The novel One-PCR-tube method is competitive for commercial kits with the same time and simpler operation procedure. This method may be widely used for identifying food that contains modified DNA and specific pathogens in the field.  相似文献   

9.
Li J  Wan Y  Wang L  Zhu X  Su Y  Li D  Zhao Y  Huang Q  Song S  Fan C 《Analytica chimica acta》2011,(1):114-119
In this report, we developed a universal assay method for both genomic DNA and proteins by using enzyme-based multi-component optical nanoprobes. The nanoprobes are gold nanoparticles assembled with bio-recognizing and signaling elements. We firstly demonstrated that the nanoprobes could detect unpurified asymmetric polymerase chain reaction (PCR) product from genomic DNA of Escherichia coli, with the sensitivity approximately 10 times higher than that of quantitative real-time PCR assay. The limit of detection (LOD) of our nanoprobe-based method is less than 10 pg template DNA (target DNA). Using DNA aptamers as recognition elements, we also showed that as few as 0.1 nM thrombin could be colorimetrically detected with high specificity. These results indicated that the enzyme-based multi-component nanoprobes have the capability to work with real biological samples, and have the potential in various biological and clinical applications.  相似文献   

10.
We document the surprising result that single-stranded DNA adsorbs on negatively charged gold nanoparticles (Au-nps) with a rate that depends on sequence length and temperature. After ss-DNA adsorbs on Au-nps, we find that the particles are stabilized against salt-induced aggregation. These observations can be rationalized on the basis of electrostatics and form the basis for a colorimetric assay to identify specific sequences and single nucleotide polymorphisms on polymerase chain reaction (PCR)-amplified DNA. The assay is label-free, requires no covalent modification of the DNA or Au-np surfaces, and takes on the sensitivity of PCR. Most important, binding of target and probe takes place in solution where hybridization occurs in less than 1 min. As an example, we test PCR-amplified genomic DNA from clinical samples for single nucleotide polymorphisms (SNPs) associated with a fatal arrhythmia known as long QT syndrome.  相似文献   

11.
Food ingredient adulteration, especially the adulteration of milk and dairy products, is one of the important issues of food safety. The large price difference between camel milk powder, ovine, and bovine milk powder may be an incentive for the incorporation of ovine and bovine derived foods in camel milk products. This study evaluated the use of ordinary PCR and real-time PCR for the detection of camel milk powder adulteration based on the presence of ovine and bovine milk components. DNA was extracted from camel, ovine, and bovine milk powder using a deep-processed product column DNA extraction kit. The quality of the extracted DNA was detected by amplifying the target sequence from the mitochondrial Cytb gene, and the extracted DNA was used for the identification of milk powder based on PCR analysis. In addition, PCR-based methods (both ordinary PCR and real-time PCR) were used to detect laboratory adulteration models of milk powder using primers targeting mitochondrial genes. The results show that the ordinary PCR method had better sensitivity and could qualitatively detect ovine and bovine milk components in the range of 1% to 100% in camel milk powder. The commercial camel milk powder was used to verify the practicability of this method. The real-time PCR normalization system has a good exponential correlation (R2 = 0.9822 and 0.9923) between ovine or bovine content and Ct ratio (specific/internal reference gene) and allows for the quantitative determination of ovine or bovine milk contents in adulterated camel milk powder samples. Accuracy was effectively validated using simulated adulterated samples, with recoveries ranging from 80% to 110% with a coefficient of variation of less than 7%, exhibiting sufficient parameters of trueness. The ordinary PCR qualitative detection and real-time PCR quantitative detection method established in this study proved to be a specific, sensitive, and effective technology, which is expected to be used for market detection.  相似文献   

12.
Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.  相似文献   

13.
A bead-based hybridization assay was developed for detection of traces of E. coli genomic DNA (gDNA) present in purified plasmid DNA (pDNA) samples. Standards of gDNA and pDNA samples were sheared by sonication and adsorbed onto aminopropyl controlled pore glass (CPG) particles (130 μm). A preliminary study was conducted to optimize the amount of DNA adsorbed on the particles. Results indicated that maximum attachment efficiency was obtained by adsorbing DNA for 2 h in 0.2 × SSC, pH 5.7. The DNA-bound particles were hybridized overnight with a 181-bp digoxigenin-labeled probe, specific for gDNA. Following a chemiluminescent detection protocol, signal intensities of the standards were plotted as a function of initial gDNA concentration. The calculated detection limit (LOD) was 1.4 pM of gDNA. The assay was able to detect gDNA in pure plasmid preparations at the 1% level even in the presence of 1,000-fold excess of noncomplementary target. Hybridization results were compared with a quantitative real-time PCR assay. Both methods afforded similar accurate results at the 95% confidence level.  相似文献   

14.
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.  相似文献   

15.
To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab μL?1 milk and 0.4 ng mL?1 Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n?=?8) or non-transgenic (n?=?7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.
Figure
Schematic formats for quantitative real-time PCR and ELISA for the quantification of cry1Ab DNA and Cry1Ab protein  相似文献   

16.
We introduce a switchable lanthanide luminescence reporter technology based closed-tube PCR for the detection of specific target DNA sequence. In the switchable lanthanide chelate complementation based reporter technology hybridization of two nonfluorescent oligonucleotide probes to the adjacent positions of the complementary strand leads to the formation of a highly fluorescent lanthanide chelate complex. The complex is self-assembled from a nonfluorescent lanthanide chelate and a light-harvesting antenna ligand when the reporter molecules are brought into close proximity by the oligonucleotide probes. Outstanding signal-to-background discrimination in real-time PCR assay was achieved due to the very low background fluorescence level and high specific signal generation. High sensitivity of the reporter technology allows the detection of a lower concentration of amplified DNA in the real-time PCR, resulting in detection of the target at the earlier amplification cycle compared to commonly used methods.  相似文献   

17.
An electrochemical genosensor array for the simultaneous detection of three high-risk human papillomavirus (HPV) DNA sequences, HPV16, 18 and 45, exhibiting high sensitivity and selectivity is presented. The electrodes of a 4 × 4 array were modified via co-immobilization of a 1:100 (mol/mol) mixture of a thiolated probe and an oligoethyleneglycol-terminated bipodal thiol. Detection of synthetic and PCR products was carried out in a sandwich type format, with the target hybridized between a surface immobilized probe and a horseradish peroxidase-labelled secondary reporter probe. The detection limits obtained in the detection of each individual target were in the pM range, allowing the application of this sensor for the detection of samples obtained from PCR amplification of cervical scrape samples. The results obtained exhibited an excellent correlation with the HPV genotyping carried out within a hospital laboratory. Multiplexing and cross-reactivity studies demonstrated high selectivity over potential interfering sequences, facilitating application of the developed platform for the high-throughput screening of multiple high-risk DNA sequences.  相似文献   

18.
A real-time quantitative polymerase chain reaction (PCR) technique was developed for the quantification of chamois and pyrenean ibex DNAs in meat mixtures by using a SYBR green detection platform. Two species-specific systems and a eukaryotic endogenous system were combined in the real-time PCR approach to quantify the target species. In the specific systems, a 133 base pair (bp) fragment of the 12S rRNA gene was amplified from chamois DNA, and an 88 bp fragment from the D-loop region was amplified from pyrenean ibex DNA. In the endogenous system, universal primers amplified a 141 bp fragment on the nuclear 18S rRNA gene from eukaryotic DNA. The threshold cycle values obtained with the 18S rRNA primers were used to normalize those obtained from chamois- or pyrenean ibex-specific systems, serving as endogenous control for the total content of PCR-amplifiable DNA in the sample. Analysis of experimental raw and heat-treated binary mixtures of chamois and pyrenean ibex meat in a swine meat matrix demonstrated the suitability of the assay for the detection and quantification of the target DNAs in the range of 0.1-0.8%, depending on the species and treatment of the meat samples.  相似文献   

19.
An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species‐specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species‐specific fragments, making the assay self‐confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost‐effective manner.  相似文献   

20.
The application of a new fluorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号