首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
建立了超高效液相色谱-串联质谱法同时测定水果中吡菌磷、伏杀硫磷、乙硫磷、甲基嘧啶磷、速灭磷、杀扑磷、亚胺硫磷、二嗪磷、治螟磷等9种有机磷农药残留量的方法,对提取条件、流动相比例、质谱条件进行了研究.待测样品直接用含1%冰乙酸的乙腈提取,乙二胺-N-丙基硅烷(PSA)吸附剂除杂,采用电喷雾离子源(ESI)、多反应监测正离...  相似文献   

2.
A multi-residue method has been developed and validated for the simultaneous quantification and confirmation of around 130 multiclass pesticides in orange, nectarine and spinach samples by GC-MS/MS with a triple quadrupole analyzer. Compounds have been selected from different chemical families including insecticides, herbicides, fungicides and acaricides. Three isotopically labeled standards have been used as surrogates in order to improve accurate quantitation. Samples were extracted by using accelerated solvent extraction (ASE) with ethyl acetate. In the case of spinach, an additional clean-up step by gel permeation chromatography was applied. Determination was performed by GC-MS/MS in electron ionization mode acquiring two MS/MS transitions for each analyte. The intensity ratio between quantitation transition (Q) and identification transition (q) was used as confirmatory parameter (Q/q ratio). Accuracy and precision were evaluated by means of recovery experiments in orange, nectarine, and spinach samples spiked at two concentration levels (0.01 and 0.05 mg/kg). Recoveries were, in most cases, between 70% and 120% and RSD were below 20%. The limits of quantification objective for which the method was satisfactorily validated in the three samples matrices were for most pesticides 0.01 mg/kg. Matrix effects over the GC-MS/MS determination were tested by comparison of reference standards in pure solvent with matrix-matched standards of each matrix. Data obtained showed enhancement of signal for the majority of analytes in the three matrices investigated. Consequently, in order to reduce the systematic error due to this effect, quantification was performed using matrix-matched standard calibration curves. The matrix effect study was extended to other food matrices such as raisin, paprika, cabbage, pear, rice, legume, and gherkin, showing in all cases a similar signal enhancement effect.  相似文献   

3.
An analytical procedure was developed for the determination of some natural pesticides (piperonyl butoxide, nicotine, rotenone, spinosad, and abamectin B1a) in fruit matrixes. The quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was used for extraction. Analysis of the extract was performed by LC-electrospray ionization (ESI)-MS/MS. The ions prominent in the ESI spectra were [M+Na]+ for abamectin B1a, [M+NH4]+ for piperonyl butoxide, and [M+H]+ for the rest of the compounds. A Zorbax SB-C18 column was used with a programmed gradient mobile phase consisting of (A) water containing 0.1% formic acid and 5 mM ammonium formate, and (B) acetonitrile containing 2 mM sodium acetate. The method was linear within the investigated concentration range, displaying a calibration curve correlation factor of 0.99. The CVs obtained were below 20%, and recoveries were in the 70-110% range.  相似文献   

4.
A sensitive and rapid multi-residue analytical method for plant growth regulators (PGRs) (i.e., chlormequat, mepiquat, paclobutrazol, uniconazole, ethephon and flumetralin) in apples and tomatoes was developed using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). A homogenised sample was extracted with a mixture of methanol/water (90:10, v/v) and adjusted to pH <3 with formic acid. Primary secondary amine (PSA) adsorbent was used to clean up the sample. The determination was performed using electrospray ionisation (ESI) and a triple quadrupole (QqQ) analyser. Under the optimised method, the results showed that, except for ethephon, the recoveries were 81.8-98.1% in apples and tomatoes at the spiked concentrations of 0.005 to 2 mg/kg, with relative standard deviations (RSDs) of less than 11.7%. The limits of quantification (LOQs) were lower than their maximum residue limits (MRLs). The procedure was concluded as a practical method to determine the PGR residues in fruit and vegetables and is also suitable for the simultaneous analysis of the amounts of samples for routine monitoring. The analytical method described herein demonstrates a strong potential for its application in the field of PGR multi-residue analysis to help assure food safety.  相似文献   

5.
A LC-MS-MS method capable of the quantitative determination of a range of pesticide residues present in crude extracts from a variety of fruit and vegetables has been developed. Isocratic LC conditions have been used in conjunction with electrospray ionisation tandem mass spectrometry to detect and identify up to 38 pesticides presented as various mixtures in different matrices. The utility of the method is demonstrated by the analysis of crude extracts, with no sample clean up, from grape, kiwi fruit, strawberry, spinach, lemon, peach and nectarine. Mean recoveries ranging from 63 to 96% with relative standard deviations < 20% were obtained for 30 of the 38 pesticides following analysis of organic produce fortified at concentrations between 0.01 and 0.8 mg/kg. Detected residues were quantified from interpolation against calibration data generated using matrix-matched standards that covered analyte concentration ranges between 0.005 and 0.8 microg/ml. Conditions suitable for the qualitative and quantitative confirmation of residues detected in samples are specified.  相似文献   

6.
The confirmatory LC-MS/MS method for the determination of residues for twelve coccidiostats including ionophore antibiotics (lasalocid, maduramycin, monensin, narasin, salinomycin, semduramycin) and chemical coccidiostats (clazuril, decoquinate, diclazuril, halofuginone, nicarbazin and robenidine) in poultry liver has been developed. The sample preparation was based on extraction with acetonitrile, defatting with Alumina columns and clean-up on Oasis HLB spe. The separation of analytes was performed on PhenylHexyl column with a gradient of acetonitrile, methanol and the ammonium formate pH 4.0. For all analytes, at least 2 diagnostic fragmentation ions were monitored. The validation, performed according to the CD 2002/657/EC, proved the suitability of the method for the confirmatory analysis of the coccidiostats. For lasalocid, however, low reproducibility was observed and the proper quantification could not be performed with this method.  相似文献   

7.
Su J  Lu S  Chen J  Chen J  Liang Z  Liu J 《色谱》2011,29(7):643-655
以溶剂转移净化为核心步骤,建立了一种适用于大蒜样品中农药多残留分析的前处理方法(方法I),配以一个辅助方法(方法II),构成大蒜中常见289种农药多残留的分析体系(方法I283种,方法II6种)。方法I中,样品用乙腈-水溶液提取,盐析分配,溶剂转移和固相萃取(SPE)净化后进行气相色谱-质谱(GC-MS)分析;方法II中,样品用无水Na2SO4配合乙酸乙酯均质研磨,超声波辅助提取,提取液经Primary Secondary Amine (PSA)粉末分散固相萃取和LC-Si柱选择洗脱净化后进行GC分析。GC-MS采用选择离子监测(SIM)方式,GC采用火焰光度检测器(FPD)检测,外标法定量。方法简便、快速,通过优化前处理和上机条件,在最优条件下进行测试,方法的定量限(S/N≥10)为0.01~0.05 mg/kg。方法I中,在加标水平为0.02、0.20 mg/kg时,回收率为52%~163%,其中回收率在70%~120%之间的占88%,相对标准偏差为2.4%~18%;方法II中,在加标水平为0.01、0.02、0.10、0.20 mg/kg时,回收率为70%~111%,相对标准偏差为3.2%~9.3%。详细描述了实验模型的构建,并对GC-MS灵敏度的提高提出了新的见解。该方法准确、灵敏、快速,可满足大蒜中多种农药残留的检测要求。  相似文献   

8.
9.
A multiresidue method has been developed for determining pesticide residues in the tropical fruits kiwi, custard apple, and mango. The intended purpose of the method is for regulatory analyses of commodities for pesticides that have established maximum residue limits. A fast and simple extraction method with cyclohexane-ethyl acetate (1 + 1, v/v) and a high-speed homogenizer was optimized. Pressurized liquid extraction was evaluated as an alternative automated extraction technique. The pesticide residues were determined by using low-pressure gas chromatography coupled to tandem mass spectrometry. The proposed methodology was validated for each matrix. Pesticide recoveries ranged from 70 to 110%, with repeatability relative standard deviations of < or = 18% at spiking levels of 12 and 50 microg/kg. The limits of quantitation were in the range of 0.03-6.17 microg/kg, and the limits of detection were between 0.01 and 3.75 microg/kg. Mango can be selected as a representative matrix for calibration on the basis of the results of a potential matrix effect study. The method was successfully applied to the determination of pesticide residues in real samples in Spain.  相似文献   

10.
A method based on liquid chromatography (LC)-mass spectrometry (MS)/MS was developed for sensitive determination of a number of less gas chromatography (GC)-amenable organophosphorus pesticides (OPs; acephate, methamidophos, monocrotophos, omethoate, oxydemeton-methyl and vamidothion) in cabbage and grapes. For extraction, several solvents were evaluated with respect to the possibility of direct injection, matrix-induced suppression or enhancement of response, and extraction efficiency. Overall, ethyl acetate was the most favourable solvent for extraction, although a solvent switch was required. For some pesticide/matrix combinations, reconstitution of the residue after evaporation required special attention. Extracts were analysed on a C18 column with polar endcapping. The pesticides were ionised using atmospheric pressure chemical ionisation on a tandem mass spectrometer in multiple reaction monitoring mode. The final method is straightforward and involves extraction with ethyl acetate and a solvent switch to 0.1% acetic acid/water without further cleanup. The method was validated at the 0.01 and 0.5 mg/kg level, for both cabbage and grapes. Recoveries were between 80 and 101% with R.S.D. < 11% (n = 5). The limit of quantification was 0.01 mg/kg and limits of detection were between 0.001 and 0.004 mg/kg.  相似文献   

11.
A sensitive and effective method for the simultaneous quantitative determination of aminopyralid, clopyralid, and picloram in vegetables (eggplant, cucumber, and tomato) and fruits (apple and grape) was developed and validated using ultra-performance LC coupled with MS/MS. The three herbicides were successfully separated and independently confirmed in a single run. Different extraction and cleanup methods were used to optimize the pretreatment processes of the residue analysis method. The final method is straightforward and involves extraction with 1% formic acid-acetonitrile, and no complicated cleanup process is needed. Determination of the compounds was achieved within 3.0 min. Respective average recoveries using this method at four concentration levels (0.05, 0.1, 0.5, and 1.0 mg/kg) ranged from 66.5 to 109.4%, with RSDs in the range of 1.1-19.7% (n = 5) for all analytes. The LODs were below 0.010 mg/kg, and the LOQs did not exceed 0.036 mg/kg, which were lower than the maximum residue limits (MRLs) of 0.5-5.0 mg/kg clopyralid in vegetables and fruits samples, as established by the European Union. This study provides a theoretical basis for China to develop MRLs and an analytical method for aminopyralid, clopyralid, and picloram in vegetables and fruits.  相似文献   

12.
Ion suppression, a matrix effect that affects quantitative mass spectrometry, is one of the main problems encountered in liquid chromatography/tandem mass spectrometry. Two different clean-up steps for the multi-residue analysis of beta-agonists in urine were evaluated with respect to minimisation of ion suppression, namely, a mixed-phase solid phase extraction (SPE) column, i.e., clean screen Dau (CSD), and a molecular imprinted polymer (MIP) SPE column. Ion suppression experiments revealed that CSD sample clean-up can lead to false negative results for some beta-agonists, and that clean-up using MIP columns is more selective for beta-agonists than the use of CSD columns.  相似文献   

13.
High-throughput chiral liquid chromatography/tandem mass spectrometry   总被引:3,自引:0,他引:3  
Chiral liquid chromatography is a well-established area of bioanalytical chemistry and is often used during the processes of drug discovery and development. The development and use of a chiral drug require the understanding of the pharmacokinetic characteristics of each of the enantiomers, including potential differences in their absorption, distribution, metabolism, and excretion. Chromatographic techniques coupled to atmospheric pressure ionization-tandem mass spectrometry have shown potential as sensitive and robust tools in the quantitative and qualitative determination of enantiomers in biologic fluids and tissue extracts. However, development of a chiral liquid chromatography method requires time-consuming procedures that are devised empirically. Clearly, there is an incentive to design chromatographic approaches that are easy to use, compatible with mass spectrometry ionization interface conditions, exhibit relatively short run times without compromising sensitivity, and offer a broad analyte specificity. For these reasons, the present paper explores the feasibility of the bonded macrocyclic glycopeptide phases (teicoplanin and vancomycin) for analysis by chiral liquid chromatography/tandem mass spectrometry. Ritalinic acid, pindolol, fluoxetine, oxazepam, propranolol, terbutaline, metoprolol, and nicardipine were tested in this study. Furthermore, an example of a simultaneous chiral LC/MS/MS detection (chromatographic run time approximately 10 min) of four pharmaceutical products resulting in baseline resolutions of all four pairs of enantiomers is presented. Methanol, an MS-compatible mobile phase, was utilized in all the experiments.  相似文献   

14.
This paper describes a method for the sensitive and selective determination of two macrocyclic lactones (abamectin and spinosad) and azadirachtin in apple purée, concentrated lemon juice, tomato purée and canned peas. The general sample extraction-partitioning method for our gas chromatography and liquid chromatography multiresidue methods has been used. The analytical procedure involves an extraction with acetone and liquid-liquid partitioning with ethyl acetate/cyclohexane combined in one step. The extracts are analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) without any further clean-up step. The pesticides are separated on a reversed-phase C12 column using a gradient elution. Thirteen simultaneous MS/MS transitions of precursor ions were monitored. Studies at fortification levels of 2.5-10 microg/kg and 25-100 microg/kg gave mean recoveries ranging from 70-100% for all compounds with satisfactory precision (relative standard deviation (RSD) from 3-20%). The excellent selectivity and sensitivity allows quantification and identification of low levels of pesticides in canned peas, tomato and apple purées (limits of quantitation (LOQs) 1-5 microg/kg) and in concentrated lemon juice (LOQs 2-10 microg/kg). The quantification of analytes was carried out using the most sensitive transition for every compound and by 'matrix-matched' standards calibration.  相似文献   

15.
Two different isotope-dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods for the quantitative determination of folic acid (FA) in multivitamin/multielement tablets are reported. These methods represent distinct improvements in terms of speed and specificity over most existing microbiological and chromatographic methods for the determination of FA in dietary supplements. The first method utilizes an aqueous/organic-based extraction solvent combined with positive-ion mode LC/MS/MS detection of protonated [M + H]+ FA molecules and the second method utilizes a pure aqueous-based extraction solvent combined with negative-ion mode LC/MS/MS detection of deprotonated [M - H]- FA molecules. The LC/MS/MS methods exhibit comparable linear dynamic ranges (> or =3 orders of magnitude), limits of detection (0.02 ng on-column) and limits of quantification (0.06 ng on-column) for FA. Two methods employing different extraction and different MS detection modes were developed to allow method cross-validation. Successful validation of each measurement procedure supports the use of either method for the certification of FA levels in dietary supplements. The accuracy and precision of each measurement procedure were evaluated by applying each method to the quantitative determination of FA in a NIST standard reference material (NIST SRM 3280 multivitamin/multielement tablets). The FA measurement accuracy for both methods was > or =95% (based on the manufacturer's assessment of the FA level in SRM 3280) with corresponding measurement precision values (% RSD) of approximately 1%.  相似文献   

16.
Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS–MS) has been used for screening and quantification of 32 pesticides and metabolites in two fruit matrices. The compounds investigated belonged to different chemical families of insecticides, acaricides, fungicides, and herbicides; several metabolites were also included. Quantification was conducted using matrix-matched standards calibration; response was a linear function of concentration in the range tested (10–500 ng mL−1). The method was validated with blank samples of lemon and raisin spiked at 0.01 and 0.1 mg kg−1, and recoveries were satisfactory, between 70 and 110%, for most of the pesticides tested and relative standard deviations were below 15% (n = 5 at each spiking level). Excellent sensitivity resulted in limits of detection for all compounds well below 0.01 mg kg−1, with the limit of quantification being validated at 0.01 mg kg−1. The UPLC system generates narrow peaks (approx. 5 s), thus increasing peak height and improving sensitivity. This improved separation efficiency facilitates adequate resolution not only of the analytes but also of matrix interferences compared with conventional HPLC. The method developed could also resolve some geometric isomers. The main advantage of this approach is the high sample throughput achieved because of the short analysis time, which enables satisfactory separation of all the compounds in less than 5 min per sample.  相似文献   

17.
Pesticide residues in fruit and vegetables were determined by gas chromatography/tandem mass spectrometry (GC/MS/MS). Electron impact (EI)/MS/MS and chemical ionization (CI)/MS/MS were developed for 80 compounds, including organochlorine, organophosphorus, organonitrogen, and pyrethroids, providing unambiguous spectral confirmation for these complex matrixes. Residues were extracted from samples with acetone followed by a mixture of dichloromethane-petroleum ether. Two injections per sample were required for analysis of the entire pesticide list by EI/MS/MS and CI/MS/MS. Initial steps involving cleanup and concentration of extracts were eliminated. The excellent selectivity and good linearity allowed quantification and identification of low levels of pesticides in the most difficult matrixes. The method has been used for routine analysis of many vegetables.  相似文献   

18.
This paper describes a method for the sensitive and selective determination of 24 new pesticide residues (azoxystrobin, trifloxystrobin, kresoxim-methyl, fenazaquin, indoxacarb, fenothiocarb, furathiocarb, benfuracarb, imidachloprid, dimethomorph, fenpyroximate, hexythiazox, tebufenpyrad, tebufenozide, difeconazole, fenbuconazole, flusilazole, paclobutrazol, tebuconazole, tetraconazole, bromuconazole, etofenprox, fenhexamid, pyridaben) in apple puree, concentrated lemon juice and tomato puree. A miniaturized extraction-partition procedure requiring small amounts of non-chlorinated solvents was used. The extracts are analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) without any further clean-up step. The pesticides are separated on a reversed-phase polar column using a gradient elution. Fifty-five simultaneous MS-MS transitions of precursor ions were monitored (two or three for each pesticide). Studies at fortification levels of 0.001-0.020 and 0.010-0.200 mg/kg gave mean recoveries ranging from 76 to 106% for all compounds, except for imidacloprid, with (R.S.D.s) < or = 15%. The excellent sensitivity and selectivity of LC-MS-MS method allowed quantitation and identification at low levels also in difficult matrices with a run time of 20 min. With the developed method almost 100 samples of commercial fruit products (nectars, juices, purees) were analyzed. None of samples contained residues higher than 0.010 mg/kg.  相似文献   

19.
Thyreostats are banned compounds in Europe since 1981 (directive 81/602/EC) because of their carcinogenic and teratogenic properties. The control of their illegal use in breeding animals is amongst the most difficult because of their low molecular weight, high polarity and the existence of tautomeric forms. The analytical procedure described in this paper involves, after a derivatisation step with 3-iodobenzylbromide, the detection and identification at low level (microg/L) by LC-ESI(-)-MS/MS of eight thyreostats in various biological matrices (urine, muscle, liver, thyroid, animal feed, faeces and hair). The urine method has been validated according to the EU criteria (2002/657/EC decision): CCalpha and CCbeta were found in the range (0.1-5.2 microg/L) and (2.6-23.2 microg/L), respectively. The performances fulfil the requirements of the EU regarding the provisional minimum required performance limit (MRPL) fixed at 100 microg/L in urine.  相似文献   

20.
A sensitive method using liquid chromatography with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was developed and validated to quantify and confirm 13 pesticides, including aldicarb sulfoxide, aldicarb sulfone, oxamyl, methomyl, formetanate, 3-hydroxycarbofuran, carbendazim, thiabendazole, aldicarb, propoxur, carbofuran, carbaryl, and methiocarb, in soy-based infant formula. Data acquisition under MS/MS was achieved by applying multiple reaction monitoring of 2 fragment ion transitions to provide a high degree of sensitivity and selectivity for both quantitation and confirmation. Different approaches to constructing calibration curves were compared and discussed to address issues of the extraction efficiency or recovery, and matrix effects. Matrix-matched standard calibration curves with the use of isoprocarb as an internal standard were finally used to achieve the best accuracy of the method. Under most circumstances, recoveries of 13 pesticides, spiked at 5.0, 25.0, and 45.0 microg/kg, were close to 100%. The method detection limits (signal-to-noise ratio > or =3:1; microg/kg) of 13 pesticides were 0.2 for thiabendazole and methiocarb, 0.6 for aldicarb, and 0.1 for the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号