首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of synthesis conditions (molar ratio between precursors, concentration of surfactants, synthesis temperature) on the size of CdS, ZnS and Ag2S nanoparticles (NPs) stabilized by sodium bis(2-ethylhexyl)succinate and polyoxyethylenesorbitan monooleate was studied. It was established that stabilization by polyoxyethylenesorbitan results in formation of smaller NPs (~8 nm) as compared to that in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (14–60 nm), which is due to the difference between the adsorption rates of these surfactants onto the surface of synthesized NPs. The resulting aqueous dispersions of CdS, ZnS and Ag2S NPs exhibit long-term stability to sedimentation. The nanoparticle size increases insignificantly with temperature increasing to 65–70°C and rises abruptly at higher temperatures. The increase in the ratio between concentrations of precursors (sulfide and metal ions) also results in an increase in NP size, allowing one to synthesize nanoparticles of prescribed sizes. The optical properties of the resulting nanoparticles were studied. The positions of the exciton peaks and the luminescence intensity peaks of the dispersions of synthesized CdS and ZnS NPs were determined.  相似文献   

2.
Magnetic nanoparticles (MNPs) functionalized with methotrexate (MTX)-conjugated bovine serum albumin (BSA) as a biocompatible drug delivery vehicle were synthesized using a facile method. Characterization of the functionalized MNPs (Fe3O4@BSA-MTX NPs) was performed using various techniques including UV–visible spectroscopy, dynamic light scattering, vibrating sample magnetometry and X-ray diffraction. The particle size and zeta potential of Fe3O4@BSA-MTX NPs were 105.7 ± 3.81 nm (mean ± SD) and −18.2 mV, respectively. MTX release from Fe3O4@BSA-MTX NPs showed an enzyme-dependent release pattern. Hemo-biocompatibility of Fe3O4@BSA-MTX NPs was confirmed using hemolysis test. In addition, the cytotoxicity of functionalized MNPs and free MTX against MCF-7 cell line was investigated using MTT assay. The results of experiments revealed that the Fe3O4@BSA-MTX NPs as a biocompatible carrier could improve the therapeutic effect of MTX.  相似文献   

3.
Environmentally sensitive polysaccharide nanoparticles (NPs) were prepared by in situ polymerization of N-isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) micelles. First, CS was found to develop a cationic micelle-like structure in the acetic acid solution when its concentration was increased to above the critical micelle concentration, as evidenced by fluorescence and TEM. When the NIPAAm was polymerized in the CS micelle solution by using potassium persulfate as initiator, the produced PNIPAAm with anionic chain end(s) became hydrophobic, as long as the reaction temperature was above its phase transition temperature; and therefore it would diffuse into the hydrophobic core of the CS micelles, producing CS-PNIPAAm core–shell NPs. Increasing the feeding amount of NIPAAm increased the monomer conversion and therefore the particle size; yet it decreased the surface zeta potential. Moreover, the CS-PNIPAAm NPs were sensitive to both pH value and temperature. For the study of drug release properties, doxycycline hyclate was used as a model drug and loaded into the NPs at pH 4.5 and 25 °C. The result illustrated that these NPs had a continuous drug release behavior up to 1 week, depending on the pH value and temperature. In addition, enzyme or hydrogen peroxide capable of degrading CS shell was added in the solution to facilitate the drug release.  相似文献   

4.
In this study, a new, economical and green method was reported for synthesizing Fe3O4@CuO nanoparticles without adding any surfactants using Euphorbia polygonifolia extract as a renewable, mild and safe reducing agent and effective stabilizer. The green synthesized NPs were analyzed by various methods such as XRD, FESEM, FT-IR, EDS, VSM, UV–visible, DRS, BET and TGA-DTA. Based on the BET analysis, the Fe3O4@CuO NP had a surface area of 69.20 m2/g. The FTIR analysis verified the existence of different functional groups of phytochemicals from Euphorbia polygonifolia extract which were accountable for the NPs formation. The catalytic performance of the catalyst for the degradation of metronidazole, ciprofloxacin and cephalexin antibiotics was examined in aqueous mediums at room temperature. The results showed an extraordinary catalytic performance, easy reusability and long-term stability of the composite for reducing antibiotic pollution. In this process, the effects of environmental conditions such as initial pH of the environment, initial concentration of antibiotics, the concentration of modified photocatalyst and reaction time were studied. According to the results, at the optimal conditions, the highest removal efficiency for metronidazole, ciprofloxacin and cephalexin antibiotics using Fe3O4@CuO nanoparticles, were 89%, 94%, and 96%, respectively. Also, it was observed that even after recycling, the NPs presents good nanocatalytic stability for the degradation of antibiotics. Using the NPs for five cycles did not significantly alter the photocatalyst efficiency, showing that the photocatalytic stability of the NPs was excellent.  相似文献   

5.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

6.
Silica nanoparticles (SiO2 NPs) synthesized by the Stober method were used as drug delivery vehicles. Doxorubicin hydrochloride (DOX·HCl) is a chemo-drug absorbed onto the SiO2 NPs surfaces. The DOX·HCl loading onto and release from the SiO2 NPs was monitored via UV-VIS and fluorescence spectra. Alternatively, the zeta potential was also used to monitor and evaluate the DOX·HCl loading process. The results showed that nearly 98% of DOX·HCl was effectively loaded onto the SiO2 NPs’ surfaces by electrostatic interaction. The pH-dependence of the process wherein DOX·HCl release out of DOX·HCl-SiO2 NPs was investigated as well. For comparison, both the free DOX·HCl molecules and DOX·HCl-SiO2 NPs were used as the labels for cultured cancer cells. Confocal laser scanning microscopy images showed that the DOX·HCl-SiO2 NPs were better delivered to cancer cells which are more acidic than healthy cells. We propose that engineered DOX·HCl-SiO2 systems are good candidates for drug delivery and clinical applications.  相似文献   

7.
The goal of this research was to develop, fabricate and analyze polymeric nanoparticles for the administration of methotrexate (MTX). Linseed mucilage and chitosan nanoparticles (NPs) were prepared using a slightly modified polyelectrolyte complex (PEC) method. The size, shape, and encapsulation effectiveness of the resultant nanoparticles were measured. MTX release profiles at gastrointestinal pH (1.2 and 7.4) and tumor pH (5.5) were examined to determine the targeted potential of NPs as pH-responsive nanocarriers. Zeta analysis showed that nanoparticles prepared by PEC have a size range of 192.1 nm to 246 nm, and PDI was 0.3 of the optimized formulation, which showed homogenous nature of prepared nanoparticles formulation. The findings demonstrated that NPs have a low polydispersity index and a positive zeta potential (PDI). The in-vitro release of the drug indicated a pH-dependent, sustained drug release up to 24 h. Blank LSMCSNPs had almost no in-vivo cytotoxicity for 14 days, while optimum MTX loaded NPs had strong antitumor effects on HepG2 and MCF-7 cells as measured by the MTT assay. Cell apoptosis induction was also checked and MCF-7 cells treated with MTX-LSMCSNPs had a significantly greater rate of apoptosis (21.2 %) than those treated with MTX alone (14.14 %). The findings show that LSMCSNPs could be a potential delivery mechanism for methotrexate to cancer cells in a secure, steady, and ideally controlled manner to improve therapeutic outcomes.  相似文献   

8.
In this study, we synthesized ofloxacin‐loaded MnFe2O4 nanoparticles (NPs) surface modified with chitosan (CS‐MnFe2O4) for prolonged antibiotic release in a controlled manner. It was found that the synthesized CS‐MnFe2O4 was spherical in shape with an average size of 30–50 nm, low aggregation, and good magnetic responsibility. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 86% of drug load and can release ofloxacin over a sustained period of 3 days. The release kinetics study reveals that the drug follows zero order kinetics and the mechanism of drug release is diffusion‐controlled type. These results indicated that CS‐MnFe2O4 NPs with pH‐sensitive properties can be used as candidates for intestinal targeted drug delivery through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach.  相似文献   

9.
The present study investigated the structure, degradation properties, and combustion behavior of starch from maize, sweet potato, lotus root, and tobacco. Compared with other plant starches, tobacco starch had the smallest size, the highest amylose content and the least crystallinity. Microscale combustion calorimetry (MCC) experiment demonstrated that sweet potato starch showed the maximum peak heat release rate value (888.0 W g?1) while tobacco starch showed the minimum value (316.0 W g?1) and thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR) results showed tobacco starch had good char formability (residue mass: 15.6%) and released more incombustible gaseous products, such as H2O and CO2. These results suggest that the thermal properties of plant starches were mainly influenced by the structural features and amylose content, especially the amylose ratio, and tobacco starch was very promising for application in green flame-retardant material.  相似文献   

10.
The interaction between silver nanoparticles (Ag NPs) of different surface charge and surfactants relevant to the laundry cycle has been investigated to understand changes in speciation, both in and during transport from the washing machine. Ag NPs were synthesized to exhibit either a positive or a negative surface charge in solution conditions relevant for the laundry cycle (pH 10 and pH 7). These particles were characterized in terms of size and surface charge and compared to commercially laser ablated Ag NPs. The surfactants included anionic sodium dodecylbenzenesulfonate (LAS), cationic dodecyltrimethylammoniumchloride (DTAC) and nonionic Berol 266 (Berol). Surfactant-Ag NP interactions were studied by means of dynamic light scattering, Raman spectroscopy, zeta potential, and Quartz Crystal Microbalance. Mixed bilayers of CTAB and LAS were formed through a co-operative adsorption process on positively charged Ag NPs with pre-adsorbed CTAB, resulting in charge reversal from positive to negative zeta potentials. Adsorption of DTAC on negatively charged synthesized Ag NPs and negatively charged commercial Ag NPs resulted in bilayer formation and charge reversal. Weak interactions were observed for nonionic Berol with all Ag NPs via hydrophobic interactions, which resulted in decreased zeta potentials for Berol concentrations above its critical micelle concentration. Differences in particle size were essentially not affected by surfactant adsorption, as the surfactant layer thicknesses did not exceed more than a few nanometers. The surfactant interaction with the Ag NP surface was shown to be reversible, an observation of particular importance for hazard and environmental risk assessments.  相似文献   

11.
Although immunotherapy has a broad clinical application prospect, it is still hindered by low immune responses and immunosuppressive tumor microenvironment. Herein, a simple and drug-free inorganic nanomaterial, alkalescent sodium bicarbonate nanoparticles (NaHCO3 NPs), is prepared via a fast microemulsion method for amplified cancer immunotherapy. The obtained alkalescent NaHCO3 regulates lactic acid metabolism through acid-base neutralization so as to reverse the mildly acidic immunosuppressive tumor environment. Additionally, it can further release high amounts of Na+ ions inside tumor cells and induce a surge in intracellular osmolarity, and thus activate the pyroptosis pathway and immunogenic cell death (ICD), release damage-associated molecular patterns (DAMPs) and inflammatory factors, and improve immune responses. Collectively, NaHCO3 NPs observably inhibit primary/distal tumor growth and tumor metastasis through acid neutralization remitted immunosuppression and pyroptosis induced immune activation, showing an enhanced antitumor immunity efficiency. This work provides a new paradigm for lactic acid metabolism and pyroptosis mediated tumor treatment, which has a potential for application in clinical tumor immunotherapy.  相似文献   

12.
The objective of the present study was to prepare a polymeric drug delivery system with no burst effect. To attain this goal, doxorubicin (Dox) as an effective anticancer drug was loaded into poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) to improve the drug performance and also maximize the release period. After the synthesis process, the freshly made PLGA NPs with two different lactide-to-glycolide ratios (75:25 and 50:50) were evaluated physically and chemically. To determine the encapsulation efficiency, a centrifugation method was applied. Also, the drug loading effect on particle size, polydispersity index, and zeta potential was examined. The results indicated that the NPs had nearly the same diameters around 360?nm, and the entrapment efficiencies for 75:25 PLGA and 50:50 PLGA were reported around 39 and 48?%, respectively. A slight increase in all parameters was observed due to the increase of the drug loading content. The primary release was 7.91?% (w/w) and 14.70?% (w/w) for 75:25 and 50:50 drug-loaded NPs, respectively; no burst effect was observed. After 20?days, the drug release was around 70.98 and 62.22?% of the total entrapped drug for 75:25 and 50:50 drug-loaded NPs, respectively. Finally, it was found that Dox was an appropriate anticancer agent with good capability to be encapsulated in polymeric NPs and could be released from the carriers with no burst effect and favor rate.  相似文献   

13.
The effects of benzethonium chloride, sodium dodecylbenzenesulfonate, and 4-(1,1,3,3-(tetramethylbutyl)phenyl poly(ethylene glycol) on the zeta potential and aggregation stability of aqueous rutile-form titanium dioxide suspensions are studied in the pH range of 2–12. It is shown that the nonionic surfactant does not affect significantly the zeta potential and aggregation stability of the suspensions. The influence of ionic surfactants on the aggregation stability of the suspensions considerably depends on the pH of a medium. At pH values above the isoelectric point of titanium dioxide suspensions (pH0 = 6.2), the suspensions demonstrate a high aggregation stability in the presence of the anionic surfactant, sodium dodecylbenzene-sulfonate (irrespective of its content), while, at pH < pH0, the aggregation stability of the suspensions markedly increases with the surfactant concentration. In the presence of the cationic surfactant, benzethonium chloride, the aggregation stability of the suspensions is independent of the surfactant concentration at pH < pH0, whereas, at pH > pH0, it increases with the surfactant concentration.  相似文献   

14.
Telmisartan (TEL) is a BCS Class II drug having dissolution rate limited bioavailability. The aim of work was to enhance the solubility of TEL so that bioavailability problems are solved. β-Cyclodextrin (β-CD) based nanosponges (NSs) were formed by cross-linking β-CD with carbonate bonds, which were porous as well as nanosized. Drug was incorporated by solvent evaporation method. The effect of ternary component alkalizer (NaHCO3) on solubility of TEL was studied. In order to find out the solubilization efficiency of NS, phase solubility study was carried out. Saturation solubility and in vitro dissolution study of β-CD complex of TEL was compared with plain TEL and NS complexes of TEL. The NS and NS complexes of TEL were characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance and scanning electron microscope. It was found that solubility of TEL was increased by 8.53-fold in distilled water; 3.35-fold in 0.1 N HCl and 4.66-fold in phosphate buffer pH 6.8 by incorporating NaHCO3 in drug–NS complex than TEL. It was found that the NaHCO3 in NS based complex synergistically enhanced dissolution of TEL by modulating microenvironmental pH and by changing amorphization of the drug. The highest solubility and in vitro drug release was observed in inclusion complex prepared from NS and NaHCO3. An increase of 54.4 % in AUC was seen in case the ternary NS complex whereas β-CD ternary complex exhibited an increase of 79.65 %.  相似文献   

15.
The interaction between organic molecules and the surface of nanoparticles (NPs) strongly affects the size, properties and applications of surface-modified metal sulfide semiconductor nanocrystals. From this viewpoint, we compared the influence of cationic surfactants with various chain lengths and anionic surfactants with different head groups, as surface modifiers during synthesis of ZnS NPs in aqueous medium. The surfactant adsorbs on the surface of the particles as micelle-like aggregates. These aggregates can form even at the concentration lower than critical micelle concentration (cmc) due to interaction between the polar groups and the NPs. The nature of interaction depends specifically on the surfactant polar group. The ability of surfactant to form the micelle-like aggregates on the surface of the NPs correlates with their cmc. This leads to the fact that the surfactant with longer tail stabilizes the NPs better since its cmc is lower. The adsorption of the surfactant on the NPs also stabilizes them by the change of their charge which is in accordance with the correlation of zeta potential with the particles stability. The energetics of surface states generating interesting photoluminescence (PL) properties in ZnS NPs has been governed by the nature of surfactant molecules. In general, the size, structure, and stability of the ZnS NPs can be controlled by the choice of suitable surfactant.  相似文献   

16.
Water-soluble PbS nanoparticles (NPs) and nanorods were grown using Pb(NO3)2 and Na2S2O3 as the precursors. Thioglycerol (TG) was shown to exhibit a catalytic role in the reaction and also acted as a capping agent. The solution pH plays an important role in nanocrystal growth, as higher pH leads to a higher release rate of S2−. This provides a way to control the nucleation growth processes. It was also demonstrated that dispersity of the obtained PbS NPs is related to the solution pH. PbS NPs with better water-solubility and narrower size distribution were produced by increasing the solution pH. The kinetics of hydrolysis of sodium thiosulfate has been examined.  相似文献   

17.

The effect of pH on the zeta potential of dispersions of individual n-alkanes C23H48 and C28H58 with particle sizes of the order of 100 nm, which were prepared by ultrasonic dispersion without the addition of surfactants, was studied. It is shown that at pH ranged from 4 to 12, the investigated n-alkanes form stable dispersions in water. They are characterized by a high zeta potential varying from ?30 to ?50 mV. The phase transition temperatures (melting point, crystallization temperature, formation of rotator phases) were determined for the dispersions using an optical method.

  相似文献   

18.
Adefovir dipivoxil (ADV) is an anti-viral drug having low bioavailability due to low permeability and pH dependent solubility. In this study, self-nanoemulsifying drug delivery systems (SNEDDS) of ADV were developed with the objective of increasing its bioavailability by enhancing its intestinal permeability and minimizing the effect of pH. Preliminary screening was carried out to select oil, surfactant and co-surfactant. Ternary phase diagrams were constructed to identify the area of nanoemulsification. The nanoemulsion system selected from the phase diagram was transformed into solid-SNEDDS (S-SNEDDS) by lyophilization using D-mannitol as cryoprotectant. The formulations were characterized for transmittance, globule size, polydispersity index, zeta potential, cloud point, robustness to dilution, effect of pH and temperature, microscopic properties, in vitro and ex vivo drug release parameters. The liquid SNEDDS (L-SNEDDS) showed mean globule size of 110 ± 10 nm while mean globule size of 150 ± 16 nm was obtained with S-SNEDDS. The formulations were found to be robust to dilution and showed cloud point at 80-85 °C. TEM and SEM studies of nanoemulsion reconstituted from S-SNEDDS demonstrated the spherical shape and size of the globules. Results of DSC and XRD studies confirmed that the drug was incorporated in the S-SNEDDS. No significant difference was observed in the globule size within physiological variations of pH and temperature. The in vitro and ex vivo drug release from ADV SNEDDS was found to be significantly higher in comparison to that from plain drug suspension, irrespective of pH. Thus, SNEDDS were found to be instrumental in reducing the effect of pH variability of ADV and improving the release performance of ADV, indicating their potential to improve the oral bioavailability and thus the therapeutic efficacy of ADV.  相似文献   

19.
The naturally occurring neocryptolepine (5-Methylindolo [2,3-b]quinoline) and its analogs exhibited prominent anticancer and antimalarial activity. However, the main problem of this class of compounds is their poor aqueous solubility, hampering their bioavailability and preventing their clinical development. To overcome the problem of insolubility and to improve the physicochemical and the pharmacological properties of 5-Methylindolo [2,3-b]quinoline compounds, this work was designed to encapsulate such efficient medical compounds into mesoporous silica oxide nanoemulsion (SiO2NPs). Thus, in this study, SiO2NPs was loaded with three different concentrations (0.2 g, 0.3, and 0.6 g) of 7b (denoted as NPA). The findings illustrated that the nanoparticles were formed with a spherical shape and exhibited small size (less than 500 nm) using a high concentration of the synthesized chemical compound (NPA, 0.6 g) and good stabilization against agglomeration (more than −30 mv). In addition, NPA-loaded SiO2NPs had no phase separation as observed by our naked eyes even after 30 days. The findings also revealed that the fabricated SiO2NPs could sustain the release of NPA at two different pH levels, 4.5 and 7.4. Additionally, the cell viability of the produced nanoemulsion system loaded with different concentrations of NPA was greater than SiO2NPs without loading, affirming that NPA had a positive impact on increasing the safety and cell viability of the whole nanoemulsion. Based on these obtained promising data, it can be considered that the prepared NPA-loaded SiO2NPs seem to have the potential for use as an effective anticancer drug nanosystem.  相似文献   

20.
In this study, a reduction‐responsive poly (ethylene glycol)‐dexamethasone biarm conjugate was synthesized as intracellular targeted drug delivery carriers. The hydroxyl end group of methoxy poly (ethylene glycol) (mPEG) was modified to introduce a biarm structure with bioreducible disulfide bond and amine end groups. Dexamethasone (Dex) as a nuclear targeting moiety was conjugated to the amine end groups of mPEG biarm derivatives, mPEG‐(NH2)2 or mPEG‐(ss‐NH2)2, with or without bioreducible disulfide bonds. The bioreducible and nonreducible mPEG‐Dex biarm conjugates, R‐mPEG‐Dex and N‐mPEG‐Dex, were synthesized and characterized by various analytical methods, proton nuclear magnetic resonance (1H‐NMR), Fourier transform infraredspectroscopy (FT‐IR), dynamic light scattering (DLS), and fluorescence measurements. Amphiphilic mPEG‐Dex conjugates self‐assembled in aqueous solutions to form nanoparticles (NPs) with a size range of 130 to 150 nm, and their critical micelle concentrations (CMCs) were determined to be 12.4 and 15.3 mg/L, respectively, for bioreducible and nonreducible ones. The R‐mPEG‐Dex NPs maintained good colloidal stability in the presence of bovine serum albumin (BSA) for more than 1 week but demonstrated a significant change in colloidal stability in the presence of dithiothreitol (DTT). In DTT‐containing phosphate‐buffered saline (PBS), the bioreducible NPs showed not only reduction‐responsive destabilization with PEG shedding but also thiol‐dependent drug release profile. Our observations indicated that the R‐mPEG‐Dex NPs have a promising prospective as an efficient nanocarrier for intracellular targeted delivery of various anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号