首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rod-shaped cellulose nanocrystals (CNCs) were manufactured and used to reinforce polyacrylamide (PAM) hydrogels through in situ free-radical polymerization. The gelation process of the nanocomposite hydrogels was monitored on a rheometer using oscillatory shear. The chemical structure, morphology, swelling property, and compression strength of the formed gels were investigated. A possible mechanism for forming hydrogels was proposed. The results showed that CNCs accelerated the formation of hydrogels and increased the effective crosslink density of hydrogels. Thus CNCs were not only a reinforcing agent for hydrogel, but also acted as a multifunctional cross-linker for gelation. The shear storage modulus, compression strength and elastic modulus of the nanocomposite hydrogels were significantly improved because of good dispersion of CNCs in PAM as well as enhanced interfacial interaction between these two components. Among the CNC contents used, a loading of 6.7 w/w% led to the maximum mechanical properties for nanocomposite hydrogels.  相似文献   

2.
Cellulose-derived materials are usually characterized by sophisticated structures, leading to unique and multiple functions, which have been a source of inspiration for the fabrication of a wide variety of nanocomposites. Cellulose nanocrystals/poly(acrylamide) (CNCs/PAM) nanocomposite hydrogels were synthesized via in situ polymerization in the CNC suspension. The cellulose from pulp fiber under different sulfuric acid hydrolysis conditions, examined by conductometric titration and transmission electron microscopy, was applied to study how the effects of the surface charge and aspect ratio affect CNCs’ mechanical reinforcement in nanocomposites. The results indicated that the higher surface charge concentration resulted in better dispersibility in aqueous suspension, leading to a more efficient energy dissipation process. The CNC reinforcement behavior followed the percolation model where the greater aspect ratio of CNC contributed to higher mechanical properties. The preferential adsorption of poly(ethylene glycol) (PEG) on the CNC surface was characterized by zeta potential measurements where the fracture strength and fracture elongation of nanocomposites decreased with increasing PEG concentration. The adsorption of PEG on the CNC surface occupied the active sites for polymer chain propagation, which hindered the PAM cross-linking effect on the CNC surface and decreased the cross-linking density of the network.  相似文献   

3.
Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite suspensions increased with higher CNC loadings and with longer aging times. PAN-co-MAA/CNC films maintained a similar level of optical transparency even with up to 40 wt% CNC loading. The glass transition temperature (Tg) increased from 92 to 118 °C, and the composites had higher thermal stability below 350 °C compared to both neat PAN-co-MAA and neat CNC. The mechanical properties also increased with higher CNC loadings, elastic modulus increased from 2.2 to 3.7 GPa, tensile strength increased from 75 to 132 MPa, and the storage modulus increased from 3.9 to 10.5 GPa. Using the Kelly and Tyson model the interfacial shear strength between the PAN-co-MAA and CNC was calculated to be 27 MPa.  相似文献   

4.
Native cellulose nanofibrils (CNF) were prepared from bleached birch pulp without any chemical or enzymatic pretreatment. These CNF were modified by adsorption of a small amount of water-soluble polysaccharides and used to prepare nanopapers, which were processed into composites by lamination with an epoxy resin and subsequently cured. The results were compared to the properties of composites prepared using bacterial cellulose nanopapers, since bacterial cellulose constitutes highly pure and crystalline cellulose. It was found that both types of nanopapers significantly improved both the thermal stability and mechanical properties of the epoxy resin. As anticipated, addition of only 2 wt% of water-soluble polysaccharides efficiently hindered crack-propagation within the nanopaper and significantly improved the tensile strength and work of fracture compared to composites containing a conventional nanopaper reinforcement. The mechanical properties of the composites thus reflected the improvement of the nanopaper properties by the polysaccharides. Moreover, it was possible to predict the properties of the final composite from the mechanical performance of the nanopapers.  相似文献   

5.
Due to the importance in economic and environmental benefits, marine biomass has gained increasing attention in recent years. In this work, marine biomass-based materials were prepared and characterized. Highly reinforcing cellulose nanocrystals (CNCs) with length of 1–2 μm and aspect ratio of ~75 were extracted from tunicates (t-CNCs), and CNCs with length of 100–300 nm and aspect ratio of ~15 from cotton (c-CNCs) were presented for comparison. In order to enhance interfacial interactions between CNCs and rubber, modification of natural rubber (NR) was conducted via epoxidation reaction to obtain epoxidized NR (ENR). Fully bio-based rubber nanocomposites were produced by latex mixing. Compared with NR nanocomposites, hydrogen bonding formed between ENR and CNCs, which led to homogeneous dispersion of CNCs and enhanced interfacial adhesion between them. Moreover, t-CNCs with longer length and larger aspect ratio facilitate filler entanglements, which led to higher reinforcing efficiency. Consequently, both hydrogen bonding and filler entanglements contributed to the improved mechanical properties of ENR/t-CNCs nanocomposites.  相似文献   

6.
The polylactic acid (PLA) nanofiber membranes reinforced with hyperbranched PLA‐modified cellulose nanocrystals (H‐PLA‐CNCs) were prepared by electrospinning. The H‐PLA‐CNCs and the nanofiber membranes were researched by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The outcomes embodied that the cellulose nanocrystals (CNCs) could be successfully improved by the hyperbranched PLA, which would offer powerful CNCs/matrix interfacial adhesion. Thus, the mechanical and shape memory properties of PLA can be improved by adding the H‐PLA‐CNCs. In particular, when the addition of H‐PLA‐CNCs was 7 wt%, the tensile strength and an ultimate strain of PLA composite nanofiber membranes was 15.56 MPa and 25%, which was 228% and 72.4% higher than that of neat PLA, respectively. In addition, the shape recovery rate of the PLA/5 wt% H‐PLA‐CNCs composite nanofiber membrane was 93%, which was 37% higher than that of neat PLA. We expected that this present study would provide unremitting efforts for the development of more effective approaches to prepare biology basic shape memory membranes with high mechanical properties.  相似文献   

7.
Cellulose nanocrystals (CNCs) are appealing nanomaterials for the reinforcement of polymeric materials. It is now well established that high mechanical properties are obtained when preparing the nanocomposite by casting/evaporation methods and using CNC contents above the percolation threshold. This phenomenon results from the formation of a stiff CNC network within the matrix meaning that the properties of the matrix play only a limited role on the mechanical properties of the material when the matrix is in the rubbery state. In subpercolation concentration or when using a different processing technique, the level of understanding is less clear, mainly when the CNC‐induced crystallization of the matrix interferes with the reinforcing mechanism. In this study, we used CNCs with different aspect ratios to prepare nanocomposites by extrusion with polybutyrate adipate terephthalate as matrix. The impact of CNC on the crystallinity of the matrix and mechanical properties of the nanocomposite has been investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2284–2297  相似文献   

8.
Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.  相似文献   

9.
High-strength, healable, supramolecular polymer nanocomposites   总被引:1,自引:0,他引:1  
A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl end-capped oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying weight percentage of CNCs (from 1.25 to 20.0 wt %) within the healable supramolecular polymeric matrix have been prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt %. Above 10 wt % CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be rehealed upon exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 wt % CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix material alone and could be fully rehealed at 85 °C within 30 min. Thus it is demonstrated that supramolecular nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing efficient thermal healing.  相似文献   

10.
The synthesis platform of composite hydrogels containing rigid reinforcing filler cellulose nanocrystals (CNCs) and polymer matrix polyacrylamide (PAM) has been proposed (Yang et al. in Cellulose 20:227–237, 2013). The features of CNCs as multifunctional crosslinkers and flexible polymer chain entanglements contributed to the unique arrangement of CNC/PAM clusters with reversible network structures. In this article, the chemical crosslinking agent N,N′-methylene-bisacrylamide (BIS) was added to obtain the dual crosslinked networks, and the mechanical properties of the resulting co-crosslinked hydrogels were examined by tailoring the CNC and BIS concentrations. The results indicated that the homogeneous dispersion of CNCs throughout the polymer matrix was disturbed in the presence of BIS, and the covalent crosslinkers led to weakness and brittleness of the hydrogels. Some new entanglements within the networks were formed after a simple drying treatment, which was verified by the greater tensile strength compared with the as-prepared ones. The mechanism for the formation of these new entanglements was ascribed to the irreversible rearrangement of the CNC/PAM network structure, whereas for co-crosslinked hydrogels no strength increment was observed after the drying treatment.  相似文献   

11.
In the present work the evolution of physical and mechanical properties of papers and nanopapers is studied. Handsheets made of eucalyptus fibres reinforced with 0, 25, 50, 75 and 100 wt% of nanofibrillated cellulose (NFC) content were fabricated using a Rapid Köthen-like equipment. The obtained papers and nanopapers were physical- and mechanically-characterized. The results showed a significant increase in density and a reduction of porosity in the samples during their transition from paper to nanopaper; besides, nanopapers were more transparent and smoother than normal papers. These physical changes where more evident with increasing amounts of NFC. Regarding mechanical properties, nanopapers with a 100 wt% content of NFC improved their strength and rigidity in 228 and 317 %, respectively, in comparison with normal papers. The evolution of strength and rigidity from paper to nanopaper was linear in relation to the amount of NFC, which means that the ultimate tensile strength was mainly dependant on nanofibril failure.  相似文献   

12.
The unique combinations of hard and soft components with core/shell structures were proposed to synthesize high strength nanocomposite hydrogels. The elastomeric hydrogels containing rod-like cellulose nanocrystals (CNCs) core and polyacrylamide shell were made from aqueous solutions via free radical polymerization in the absence of chemical cross-links. The obtained hydrogels possessed greater tensile strength and elongation ratio when compared with chemically cross-linked counterparts. Oscillatory shear experiments indicated that CNCs interacted with polymer matrix via both chemical and physical interactions and contributed to the rubbery elasticity of the hydrogels. The nanocomposite hydrogels were more viscous than the chemical hydrogels, suggesting the addition of CNC led to the increase of energy dissipating and viscoelastic properties. The network structure model was proposed and it suggested that the high extensibilities and fracture stresses were related to the well-defined network structures with low cross-linking density and lack of noncovalent interactions among polymer chains, which may promote the rearrangements of network structure at high deformations.  相似文献   

13.
Cellulose nanocrystals (CNCs) are safe, “green,” hydrophilic nanoparticles. CNCs are added in situ during a semibatch 2‐ethyl hexyl acrylate (EHA)/n‐butyl acrylate (BA)/methyl methacrylate (MMA) emulsion polymerization. As EHA is a more hydrophobic monomer, manipulation of the monomer feed composition allows for the evaluation of the effect of hydrophobicity on CNC distribution in the nanocomposite and ultimately on adhesive properties. The adhesive properties (loop tack, peel strength, and shear strength) of three different EHA/BA/MMA latex formulations are shown to simultaneously improve with increasing CNC loading. However, the hydrophobicity of the EHA leads to a nonuniform distribution of CNCs in the latex films. Comparison of the in situ polymerized nanocomposites to their blended counterparts is also made.  相似文献   

14.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

15.
We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can be easily recovered, and the prepared cellulose nanomaterials were carboxylated and thermally stable. In detail, the CNC yield from the different materials was similar. After hydrolysis, the DP of the cellulose materials decreased substantially, whereas the mechanical fibrillation of the cellulosic solid residues (CSRs) did not dramatically reduce the DP of cellulose. CNCs with different aspect ratios were produced from different starting materials by oxalic acid hydrolysis. The CNCs and CNFs obtained from BEP and QFP possessed more uniform dimensions than those from SDP. On the other hand, CNFs derived from SDP presented the best suspension stability. FTIR analyses verified esterification of cellulose by oxalic acid hydrolysis. The results from both XRD and Raman spectroscopy indicated that whereas XRD crystallinity of CNCs from BEP and QFP did not change significantly, there was some change in Raman crystallinity of these samples. Raman spectra of SDP CNCs indicated that the acid hydrolysis preferably removed cellulose I portion of the samples and therefore the CNCs became cellulose II enriched. TGA revealed that the CNCs obtained from QFP exhibited higher thermal stability compared to those from BEP and SDP, and all the CNCs possessed better thermal stability than that of CNCs from sulfuric acid hydrolysis. The excellent properties of prepared cellulose nanomaterials will be conducive to their application in different fields.  相似文献   

16.
A series of biodegradable poly (butylene succinate-co-terephthalate) (PBST) with different aromatic units content was synthesized and then melt blended by adding cellulose nanocrystals (CNCs) to manufacture the full organic composites. A network-like structure of CNCs in PBST matrix was evaluated by rheometer. The storage modulus and complex viscosity at low frequency region were significantly enhanced with increasing CNC content. Meanwhile, the decreasing tanδ and flow index were attributed to the excellent interaction between PBST and CNCs. When PBST has a content of the aromatic unit exceeds 30 mol%, the crystallization temperatures increased with increasing CNC contents. On the other hand, when PBST has 30 mol% content of the aromatic unit, the cold crystallization temperatures decreased with increasing CNC contents. These above observation in crystallization properties suggested that the CNC make a role of heterogeneous nucleation in PBST matrix. The result of mechanical properties evaluated by dynamic mechanical analysis showed a good reinforcement effect of the addition of stiff CNC. The PBST/CNC composites were suitable for cell growth and might have a potential as biomedical materials, which is confirmed by MTT assay.  相似文献   

17.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

18.
傅强 《高分子科学》2015,33(1):61-69
Chitosan/cellulose nanocrystals(CS/CNCs) composites were prepared with different contents of CNCs. Due to the homogeneous dispersion of CNCs and the strong interfacial interactions resulting from hydrogen bonding between CS chains and CNCs, the transparency of CS is well retained and the overall mechanical properties of CS are significantly improved. Furthermore, because both CS and CNCs are biocompatible materials, cell proliferation test shows that the obtained composites are noncytotoxic and can potentially meet safety requirements of biomedical applications. These advantages pave the way of potential applications of CS in the field of commercial plastics and encourage the use of CS as environmentfriendly material and biomedical material.  相似文献   

19.
The aim of this paper is to report the effect of the addition of cellulose nanocrystals(CNCs) on the mechanical, thermal and barrier properties of poly(vinyl alcohol)/chitosan(PVA/Cs) bio-nanocomposites films prepared through the solvent casting process. The characterizations of PVA/Cs/CNCs films were carried out in terms of X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetric analysis(TGA and DTG), oxygen transmission rate(OTR), and tensile tests. TEM and SEM results showed that at low loading levels, CNCs were dispersed homogenously in the PVA/Cs matrix. The tensile strength and modulus in films increased from 55.1 MPa to 98.4 MPa and from 395 MPa to 690 MPa respectively, when CNCs content went from 0 wt% to 1.0 wt%. The thermal stability and oxygen barrier properties of PVA/Cs matrix were best enhanced at 1.0 wt% of CNCs loading. The enhanced properties attained by incorporating CNCs can be beneficial in various applications.  相似文献   

20.
Cellulose nanocrystals (CNCs) with similar size and various surface charge densities were prepared by sulfuric acid hydrolysis and NaOH desulfation. The influence of surface charge density and NaCl concentration on the intrinsic viscosity of CNC suspensions and predicted aspect ratio were investigated by Ubbelohde viscometer. With decreased CNC surface charge density, the intrinsic viscosity initially decreased due to the electric double layers on the CNC surface and subsequently increased due to CNC aggregation. To screen electroviscous effect, NaCl was added into CNC suspensions. With increased NaCl concentration, the intrinsic viscosity of CNC suspensions first decreased and then increased. The aspect ratios of CNCs predicted by Batchelor equation from the minimum intrinsic viscosity were consistent with that measured by transmission electron microscopy. Suspensions of CNCs with higher surface charge density needed less NaCl to obtain minimum intrinsic viscosity. The NaCl content that should be added to the suspension to predict the actual physical aspect ratio of CNC can be estimated by Debye–Hückel theory, assuming that the Debye length is equal to the CNC diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号