首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculations of Co\(_{n-x}\)Pt\(_x\) (n = 1–3; \(x \le n\)) clusters on Ni(100) surface for their spin and orbital magnetic moments, as well as the magnetic anisotropy energy (MAE), are performed by using the density-functional theory (DFT) method including a self-consistent treatment of spin–orbit coupling (SOC). The results reveal that the ferromagnetic Co atoms in intra Co\(_{n-x}\)Pt\(_x\) adclusters couple ferromagnetically to their underlayer Ni atoms. The predominant inter-interactions between Co adatoms and Ni surface with the partly filled 3d band, together with the secondary intra-interactions between Co adatoms and Pt adatoms with fully filled 5d band, lead to a strongly quenched orbital moment (\(\mu _{\mathrm{{orb}}}^{\mathrm{{Co}}}\) = 0.18–0.14 \(\mu _B\); \(\mu _{\mathrm{{orb}}}^{\mathrm{{Pt}}} \approx \) 0.24–0.19 \(\mu _B\)) but a less quenched spin moment (\(\mu _{\mathrm{{spin}}}^{\mathrm{{Co}}} \approx \) 2.0 \(\mu _B\); \(\mu _{\mathrm{{spin}}}^{\mathrm{{Pt}}} \approx \) 0.35 \( \mu _B\)). The MAEs of CoPt adclusters exhibit a strong dependence on alloying effect rather than size effect, which is direly proportional to SOC strength and orbital moment anisotropy. The oxidations of CoPt clusters always reduce orbital magnetic moments and consequently decrease the corresponding MAEs.  相似文献   

2.
The two organic ligands 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[1,2,4]triazin-3-yl)[2,2′]bipyridine (CyMe\(_{4}\)-BTBP) and tri-butyl phosphate (TBP) have previously been investigated in different diluents for use within recycling of used nuclear fuel through solvent extraction. The thermodynamic parameters, \(K_{\mathrm{S}}\), \(\Delta C_{p}\), \(\Delta H^{0}\) and \(\Delta S^{0}\), of the CyMe\(_{4}\)-BTBP solubility in three diluents (cyclohexanone, octanol and phenyl trifluoromethyl sulfone) mixed with TBP have been studied at 288, 298 and 308 K, both as pristine solutions and pre-equilibrated with 4 mol\(\cdot \)L\(^{-1}\) nitric acid. In addition, the amount of acid in the organic phase and density change after pre-equilibration have been measured. The solubility of CyMe\(_{4}\)-BTBP increases with an increased temperature in all systems, especially after acid pre-equilibration. This increased CyMe\(_{4}\)-BTBP solubility after pre-equilibration could be explained by acid dissolution into the solvent. Comparing the \(\Delta H^{0}\) and \(\Delta S^{0}\) calculated using \(\Delta C_{p}\) with the same parameters derived from a linear fit indicates temperature independence of all three thermodynamic systems. The change in enthalpy is positive in all solutions.  相似文献   

3.
Nested wreath product groups arise from looped or recursive structures that contain repeated copies of the same structure one within the other. Phylogeny trees in biology, Cayley trees, Bethe lattices, NMR graphs of non-rigid molecules, ammoniated ammonium ions are all examples of structures that exhibit such nested wreath product automorphism groups. We show that the conjugacy classes, irreducible representations and character tables of these nested group structures can be generated using multinomial generating functions cast in terms of matrix types that can be simplified into generalized cycle type polynomials. The nested wreath product groups rapidly increase in orders, for example, a simple wreath product group \(\hbox {S}_{7}[\hbox {S}_{7}]\) consists of \((7!)^{8}\) or \(4.1633\times 10^{23}\) operations, 481,890 conjugacy classes, spanning a 481,891 \(\times \) 481,891 character table that would occupy 232,217,972 pages. We have obtained powerful recursive relations for the conjugacy classes, character tables and the orders of various conjugacy cases of any nested wreath product \(\{[\hbox {S}_{\mathrm{n}}]\}^{\mathrm{m}}\) or \(\hbox {S}_{\mathrm{n}}[\hbox {S}_{\mathrm{n}}[\hbox {S}_{\mathrm{n}}{\ldots }.[\hbox {S}_{\mathrm{n}}]]{\ldots }.]\) with order \(\left( {n!}\right) ^{a_m},\,\hbox {a}_{\mathrm{m}}=(\hbox {n}^{\mathrm{m}}-1)/(\hbox {n}-1)\). We have obtained the character tables of phylogenetic trees of any order, character tables of Cayley trees of degrees 3 and 4 and for Cayley trees of larger degrees, we have derived exact analytical expressions for the conjugacy classes and IRs for up to \(\{[\hbox {S}_{7}]\}^{\mathrm{m}}\) with order \((7!)^{137257}\) for \(\hbox {m}=7\). Applications to colorings of phylogenic trees in biology are considered.  相似文献   

4.
Given a connected surface \({\mathbb {F}}^2\) with Euler characteristic \(\chi \) and three integers \(b>a\ge 1<k\), an \((\{a,b\};k)\)-\({\mathbb {F}}^2\) is a \({\mathbb {F}}^2\)-embedded graph, having vertices of degree only k and only a- and b-gonal faces. The main case are (geometric) fullerenes (5, 6; 3)-\({\mathbb {S}}^2\). By \(p_a\), \(p_b\) we denote the number of a-gonal, b-gonal faces. Call an \((\{a,b\};k)\)-map lego-admissible if either \(\frac{p_b}{p_a}\), or \(\frac{p_a}{p_b}\) is integer. Call it lego-like if it is either \(ab^f\)-lego map, or \(a^fb\)-lego map, i.e., the face-set is partitioned into \(\min (p_a,p_b)\) isomorphic clusters, legos, consisting either one a-gon and \(f=\frac{p_b}{p_a}\,b\)-gons, or, respectively, \(f=\frac{p_a}{p_b}\,a\)-gons and one b-gon; the case \(f=1\) we denote also by ab. Call a \((\{a,b\};k)\)-map elliptic, parabolic or hyperbolic if the curvature \(\kappa _b=1+\frac{b}{k}-\frac{b}{2}\) of b-gons is positive, zero or negative, respectively. There are 14 lego-like elliptic \((\{a,b\};k)\)-\({\mathbb {S}}^2\) with \((a,b)\ne (1,2)\). No \((\{1,3\};6)\)-\({\mathbb {S}}^2\) is lego-admissible. For other 7 families of parabolic \((\{a,b\};k)\)-\({\mathbb {S}}^2\), each lego-admissible sphere with \(p_a\le p_b\) is \(a^fb\) and an infinity (by Goldberg–Coxeter operation) of \(ab^f\)-spheres exist. The number of hyperbolic \(ab^f\,(\{a,b\};k)\)-\({\mathbb {S}}^2\) with \((a,b)\ne (1,3)\) is finite. Such \(a^f b\)-spheres with \(a\ge 3\) have \((a,k)=(3,4),(3,5),(4,3),(5,3)\) or (3, 3); their number is finite for each b, but infinite for each of 5 cases (ak). Any lego-admissible \((\{a,b\};k)\)-\({\mathbb {S}}^2\) with \(p_b=2\le a\) is \(a^f b\). We list, explicitly or by parameters, lego-admissible \((\{a,b\};k)\)-maps among: hyperbolic spheres, spheres with \(a\in \{1,2\}\), spheres with \(p_b\in \{2,\frac{p_a}{2}\}\), Goldberg–Coxeter’s spheres and \((\{a,b\};k)\)-tori. We present extensive computer search of lego-like spheres: 7 parabolic (\(p_b\)-dependent) families, basic examples of all 5 hyperbolic \(a^fb\) (b-dependent) families with \(a\ge 3\), and lego-like \((\{a,b\};3)\)-tori.  相似文献   

5.
Exact solutions of the vibrational Schrödinger equation for a generalized potential energy function \(\hbox {V(R)}=\hbox {C}_{0}(\mathrm{{R}-\mathrm {R}}_{\mathrm{e}})^{2}/[\hbox {aR}\,+\,(\mathrm{{b}-\mathrm {a}})\hbox {R}_{\mathrm{e}}]^{2}\) are obtained. It includes those of Dunham, Ogilvie and Simons–Parr–Finlan potentials as special cases corresponding to b \(=\) 1, a \(=\) 0, 1/2, 1, respectively. The analytical wave functions derived are useful to test the quality of numerical methods or to perform perturbative or variational calculations for the problems that cannot be solved exactly. Coherent states for generalized potential, which minimize the position–momentum uncertainty relation are also constructed.  相似文献   

6.
Apparent molar volumes, apparent molar adiabatic compressibilities and viscosity B-coefficients for metformin hydrochloride in aqueous d-glucose solutions were determined from solution densities, sound velocities and viscosities measured at T = (298.15–318.15) K and at pressure p = 101 kPa as a function of the metformin hydrochloride concentrations. The standard partial molar volumes (\( \phi_{V}^{0} \)) and slopes (\( S_{V}^{*} \)) obtained from the Masson equation were interpreted in terms of solute–solvent and solute–solute interactions, respectively. Solution viscosities were analyzed using the Jones–Dole equation and the viscosity A and B coefficients discussed in terms of solute–solute and solute–solvent interactions, respectively. Adiabatic compressibility (\( \beta_{s} \)) and apparent molar adiabatic compressibility (\( \phi_{\kappa }^{{}} \)), limiting apparent molar adiabatic compressibility (\( \phi_{\kappa }^{0} \)) and experimental slopes (\( S_{\kappa }^{*} \)) were determined from sound velocity data. The standard volume of transfer (\( \Delta_{t} \phi_{V}^{0} \)), viscosity B-coefficients of transfer (\( \Delta_{t} B \)) and limiting apparent molar adiabatic compressibility of transfer (\( \Delta_{t} \phi_{\kappa }^{0} \)) of metformin hydrochloride from water to aqueous glucose solutions were derived to understand various interactions in the ternary solutions. The activation parameters of viscous flow for the studied solutions were calculated using transition state theory. Hepler’s coefficient \( (d\phi /dT)_{p} \) indicated the structure making ability of metformin hydrochloride in the ternary solutions.  相似文献   

7.
In the present investigations, the excess molar volumes, \( V_{ijk}^{\text{E}} \), excess isentropic compressibilities, \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), and excess heat capacities, \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \), for ternary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (i) + 1-butyl-3-methylimidazolium tetrafluoroborate (j) + 1-ethyl-3-methylimidazolium tetrafluoroborate (k) mixture at (293.15, 298.15, 303.15 and 308.15) K and excess molar enthalpies, \( \left( {H^{\text{E}} } \right)_{ijk} \), of the same mixture at 298.15 K have been determined over entire composition range of x i and x j . Satisfactorily corrections for the excess properties \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) have been obtained by fitting with the Redlich–Kister equation, and ternary adjustable parameters along with standard errors have also been estimated. The \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) data have been further analyzed in terms of Graph Theory that deals with the topology of the molecules. It has also been observed that Graph Theory describes well \( V_{ijk}^{\text{E}} \), \( \left( {\kappa_{S}^{\text{E}} } \right)_{ijk} \), \( \left( {H^{\text{E}} } \right)_{ijk} \) and \( \left( {C_{p}^{\text{E}} } \right)_{ijk} \) values of the ternary mixture comprised of ionic liquids.  相似文献   

8.
New experimental vapor pressures and vaporization enthalpies of the ionic liquids \( [ {\text{C}}_{2} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \) and \( [ {\text{C}}_{4} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \) have been measured by the QCM method. The solution enthalpies of these ionic liquids were measured by using high-precision solution calorimetry and were used for calculation the aqueous enthalpy of formation \( \Delta_{\text{f}} H_{\text{m}}^{ \circ } ({\text{CF}}_{ 3} {\text{CO}}_{2}^{ - } ,_{{}} {\text{aq}}) \) of the anion for combination with quantum-chemical results. The solubility parameters of the ILs under study have been derived from experimental \( \Delta_{\text{l}}^{\text{g}} H_{\text{m}}^{ \circ } \)(298.15 K) values and were used for estimation of miscibility of some common solutes with \( [ {\text{C}}_{n} {\text{mim][CF}}_{3} {\text{CO}}_{2} ] \).  相似文献   

9.
We evaluate the tunneling short-circuit current density \(J_{TU}\) in a pin solar cell in which the transition metal dichalcogenide heterostructure (\(\hbox {MoS}_2/\hbox {WS}_2\) superlattice) is embedded in the intrinsic i region. The effects of varying well and barrier widths, Fermi energy levels and number of quantum wells in the i region on \(J_{TU}\) are examined. A similar analysis is performed for the thermionic current \(J_{TH}\) that arises due to the escape and recapture of charge carriers between adjacent potential wells in the i-region. The interplay between \(J_{TU}\) and \(J_{TH}\) in the temperature range (300–330 K) is examined. The thermionic current is seen to exceed the tunneling current considerably at temperatures beyond 310 K, a desirable attribute in heterostructure solar cells. This work demonstrates the versatility of monolayer transition metal dichalcogenides when utilized as fabrication materials for van der Waals heterostructure solar cells.  相似文献   

10.
Nicotinic acid (also known as niacin) was recrystallized from anhydrous ethanol. X-ray crystallography was applied to characterize its crystal structure. The crystal belongs to the monoclinic system, space group P2(1)/c. The crystal cell parameters are a = 0.71401(4) nm, b = 1.16195(7) nm, c = 0.71974(6) nm, α = 90°, β = 113.514(3)°, γ = 90° and Z = 4. Molar enthalpies of dissolution of the compound, at different molalities m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. The molar enthalpy of solution at infinite dilution was calculated, according to Pitzer’s electrolyte solution model and found to be \( \Delta_{\text{sol}} H_{m}^{\infty } = ( 2 7. 3 \pm 0. 2) \) kJ·mol?1 and Pitzer’s parameters (\( \beta_{{\text{MX}}}^{{\text{(0)}L}} \), \( \beta_{{\text{MX}}}^{{\text{(1)}L}} \) and \( C_{{\text{MX}}}^{\phi L} \)) were obtained. The values of apparent relative molar enthalpies (\( {}^{\phi }L \)) and relative partial molar enthalpies (\( \overline{{L_{2} }} \) and \( \overline{{L_{1} }} \)) of the solute and the solvent at different molalities were derived from the experimental enthalpy of dissolution values of the compound. Also, the standard molar enthalpy of formation of the anion \( {\text{C}}_{ 6} {\text{H}}_{ 4} \text{NO}_{2}^{-} \) in aqueous solution was calculated to be \( {\Delta_{\text{f}}^{} H}_{\text{m}}^{\text{o}} ({\text{C}}_{ 6} {\text{H}}_{ 4} {\text{NO}}_{2}^{-} \text{,aq}) = - \left( {603.2 \pm 1.2} \right)\;{\text{kJ}}{\cdot}{\text{mol}}^{-1} \).  相似文献   

11.
Calibration of pH meters is usually performed with reference pH buffer solutions of low ionic strength, I ≤ 0.1 mol kg?1. For seawater pH measurements (I ≈ 0.7 mol kg?1), calibration buffers in high ionic strength matrix are required. The Harned cell, in association with the Nernst equation and a model for estimating the chloride ion activity coefficient, \(\gamma_{{{\text{Cl}}^{ - } }} ,\) is the basis of the primary method for pH assignment to reference pH buffers. The semi-empirical Pitzer model is, in principle, adequate to estimate \(\gamma_{{{\text{Cl}}^{ - } }}\) of complex solutions, namely seawater. Nevertheless, no assessment of the validity of the model for this matrix is known to the authors. This work aims at estimating the adequacy of the Pitzer model by assessing the metrological compatibility of mean activity coefficients, in this case \(\gamma_{ \pm } = \sqrt {\gamma_{{{\text{H}}^{ + } }} \gamma_{{{\text{Cl}}^{ - } }} }\) estimated experimentally with the Harned cell, \(\gamma_{ \pm }^{\text{Exp}} ,\) and using the Pitzer model, \(\gamma_{ \pm }^{\text{Ptz}}\). The measurement uncertainty considered in the compatibility test was estimated using the bottom-up approach, where components were combined by the numerical Kragten method after checking its adequacy. The compatibility of the estimated \(\gamma_{ \pm }\) was assessed for solutions with increasing complexity and an ionic strength of 0.67 mol kg–1. \(\gamma_{ \pm }^{\text{Exp}}\) and \(\gamma_{ \pm }^{Ptz}\) are metrologically compatible for a confidence level of 95 % where the relative standard uncertainty of their difference ranged from 1.1 % to 3.1 % in all chloride solutions to approximately 6.3 % when sodium sulfate was also present. This led to assume the validity of the Pitzer model equations to estimate \(\gamma_{{{\text{Cl}}^{ - } }} ,\) required to define reference pH values of buffer solutions with high ionic strength.  相似文献   

12.
\( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) violet system was investigated using optical emission spectroscopy in a non-equilibrium microwave atmospheric-pressure plasma jet in argon expanding in air. From the analysis of the emission spectra of the discharge in the range of 380 and 400 nm, the violet system of CN was found to be overlapped with the \( {\text{N}}_{2}^{ + } \left( {B^{2}\Sigma _{u}^{ + } , v = 1 \to X^{2}\Sigma _{g}^{ + } , v = 1} \right) \) and \( {\text{N}}_{2} \left( {C^{3}\Pi _{u} \to B^{3}\Pi _{g} } \right) \) bands, sequence \( \Delta \upsilon = - \;3 \). A numerical disentangle technique, developed in this work, permitted to obtain a well resolved violet system from the different systems observed, namely the nitrogen First Negative and the Second Positive systems. The \( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) band head intensity was determined and analysed as function of discharge powers between 30 and 150 W and fluxes between 2.5 and 10.0 slm. With aid of this numerical approach it was also possible to obtain the rotational temperature, from (1600 ± 100) to (2300 ± 100) K and vibrational temperature between (9000 ± 800) and (14,000 ± 800) K along the plasma jet. The kinetics of \( {\text{CN}} (B^{2}\Sigma ^{ + } ) \) state was analysed as well.  相似文献   

13.
The group hierarchy for each skeleton of ligancy 6 is formulated to be: point group (PG \({\varvec{G}}_{\sigma }\)) \(\subseteq \) RS-stereoisomeric group (RS-SIG \({\varvec{G}}_{\sigma \widetilde{\sigma }\widehat{I}}\)) \(\subseteq \) stereoisomeric group (SIG \(\widetilde{{\varvec{G}}}_{\sigma \widetilde{\sigma }\widehat{I}}\)) \(\subseteq \) isoskeletomeric group (ISG \(\widetilde{\widetilde{{\varvec{G}}}}_{\sigma \widetilde{\sigma }\widehat{I}}\) = \({\varvec{S}}^{[6]}_{\sigma \widehat{I}}\)), where we start from the PG \({\varvec{G}}_{\sigma }\) = \({\varvec{D}}_{6h}\) for the Kekulé benzene skeleton, from the PG \({\varvec{G}}_{\sigma }\) = \({\varvec{D}}_{3h}\) for the Ladenburg benzene skeleton, from the PG \({\varvec{G}}_{\sigma }\) = \({\varvec{C}}_{2v}\) for the Dewar benzene skeleton, or from the PG \({\varvec{G}}_{\sigma }\) = \({\varvec{C}}_{2v}\) for the benzvalene skeleton. After these groups are constructed as combined-permutation representations, the calculation of the respective cycle indices with chirality fittingness (CI-CFs) and the introduction of ligand-inventory functions are conducted to give generation functions for 3D-based enumerations (for PGs and RS-SIGs) and 2D-based enumerations (for SIGs and ISGs). The enumeration results are discussed by means of isomer-classification diagrams, in which equivalence classes under enantiomerism (for PGs), RS-stereoisomerism (for RS-SIGs), stereoisomerism (for SIGs), and isoskeletomerism (for ISGs) are illustrated schematically. The implicit connotations of the conventional terms “skeletal isomerism”, “positional isomerism”, and “constitutional isomerism” are discussed, where the effects of the concept of isoskeletomerism are emphasized.  相似文献   

14.
The density and viscosity of a ternary 1-hexene(1) + 1-octene(2) +1-decene(3) mixture (\( w_{1} = w_{2} = w_{3} = 0.333 \) weight fractions or \( x_{1} = 0.4257 \),\( x_{2} = 0.3190 \), \( x_{3} = 0.2553 \) mole fractions of 1-hexene, 1-octene, and 1-decene, respectively) have been simultaneously measured over the temperature range from (298 to 471) K and at pressures up to 196 MPa using a combined method of hydrostatic weighing and falling-body techniques, respectively. The combined expanded uncertainties of the density, pressure, temperature, concentration, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 are estimated to be (0.15 to 0.30)%, 0.05%, 0.02 K, 0.005 mol%, and (1.5 to 2.0)%, respectively. The measured densities and viscosities were used to calculate the excess molar volumes and viscosity differences. The excess molar properties (\( G_{\text{m}}^{\text{E}} , \, H_{\text{m}}^{\text{E}} , \, S_{\text{m}}^{\text{E}} \) and \( C_{\text{pm}}^{\text{E}} \)) and their pressure derivatives as a function of temperature and pressure have been calculated using the derived excess molar volumes. The measured viscosities were used to develop a theoretically based viscosity correlation model (Arrhenius–Andrade type equation) for the mixture.  相似文献   

15.
In this paper we compute explicit formulae for the Poisson kernels on the hyperbolic upper half-space \(\mathbf {H}^{n}\) and the Poincaré unit ball \(\mathbf {D}^{n}\). We first construct an associated Legendre function expression for eigenfunctions of the Laplacian and use superposition principle to get a solution for the Laplace equation on \(\mathbf {H}^{n}\). The Poisson kernel on \(\mathbf {D}^{n}\) is obtained from that on \(\mathbf {H}^{n}\) by letting the hyperbolic distance \(\rho =d(w,w')\) \((w,w'\in \mathbf {H}^{n})\) tend to infinity. These Poisson kernels, apart from being interesting in their own right lead to various identities that seem to be novel in the context of special functions.  相似文献   

16.
In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC\(_{50}\) values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC\(_{50}\) values [\(\log\)(IC\(_{50}\))] and their calculated binding free energies (\(\Delta G_\mathrm{binding}\)). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between \(\log\)(IC\(_{50}\)) and the lowest \(\Delta G_\mathrm{binding}\) is achieved with \(R^2=0.944\).  相似文献   

17.
Low-lying structures of water cationic clusters and the compounds with the OH radical have become a hot topic in recent years. We here investigate the cluster \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) and calculate its ideal structures by the quantum chemical calculation together with the particle swarm optimization method. We analyzed the properties of the obtained lower-energy isomers of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \). Their energies are further re-optimized and demonstrated at three different methods with two basis sets. Based on our numerical calculations, a new cage-like structure of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) with the lowest energy is obtained at MP2/aug-cc-pVDZ level. Our results showed the comparison of energy order at different conditions and demonstrated the influence of temperature on the relative Gibbs energy and IR spectra. Moreover, we also contained the molecule orbitals to discuss the stability of these representative isomers.  相似文献   

18.
An underdetermined linear algebraic equation system \(\mathbf{y}={\varvec{\Phi }}\mathbf{x}\), where \({\varvec{\Phi }}\) is an \(m\times n (m<n)\) rectangular constant matrix with rank \(r\le m\) and \(\mathbf{y}\in \mathrm {Ran}({\varvec{\Phi }})\) (range of \({\varvec{\Phi }})\), has an infinite number of solutions. Diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression seeks a solution satisfying the extra requirement of minimizing a chosen cost function, \({\mathcal {K}}\). A wide variety of choices of the cost function makes it possible to achieve diverse goals, and hence D-MORPH regression has been successfully applied to solve a range of problems. In this paper, D-MORPH regression is extended to determine a sparse or a nonnegative sparse solution of the vector \(\mathbf{x}\). For this purpose, recursive reweighted least-squares (RRLS) minimization is adopted and modified to construct the cost function \({\mathcal {K}}\) for D-MORPH regression. The advantage of sparse and nonnegative sparse D-MORPH regression is that the matrix \({\varvec{\Phi }}\) does not need to have row-full rank, thereby enabling flexibility to search for sparse solutions \(\mathbf{x}\) with ancillary properties in practical applications. These tools are applied to (a) simulation data for quantum-control-mechanism identification utilizing high dimensional model representation (HDMR) modeling and (b) experimental mass spectral data for determining the composition of an unknown mixture of chemical species.  相似文献   

19.
In this study, the spatial distributions of the emission intensity of OH (\(\hbox{A}^{2}\Upsigma {\rightarrow}\hbox{X}^{2}\Uppi,\) 0-0) and \(\hbox{N}_{2}^{+} (\hbox{B}^{2}\Upsigma_{\rm u}^{+}\rightarrow \hbox{X}^{2}\Upsigma_{\rm g}^{+},\) 0-0, 391.4 nm) are investigated in the atmospheric pressure pulsed streamer discharge of H2O and N2 mixture in a needle-plate reactor configuration. The effects of pulsed peak voltage, pulsed repetition rate, input power, and O2 flow rate on the spatial distributions of the emission intensity of OH (\(\hbox{A}^{2}\Upsigma {\rightarrow}\hbox{X}^{2}\Uppi,\) 0-0), \(\hbox{N}_{2}^{+} (\hbox{B}^{2}\Upsigma _{\rm u}^{+} \rightarrow \hbox{X}^{2}\Upsigma _{\rm g}^{+},\) 0-0, 391.4 nm), and the vibrational temperature of N2 (C) in the lengthwise direction from needle to plate are attained. It is found that the emission intensities of OH (\(\hbox{A}^{2}\Upsigma {\rightarrow}\hbox{X}^{2}\Uppi,\) 0-0) and \(\hbox{N}_{2}^{+} (\hbox{B}^{2}\Upsigma_{\rm u}^{+} \rightarrow \hbox{X}^{2}\Upsigma_{\rm g}^{+},\) 0-0, 391.4 nm) rise with increasing the pulsed peak voltage, the pulsed repetition rate and the input power, and decrease with increasing O2 flow rate. In the direction from needle to plate, the emission intensity of OH (\(\hbox{A}^{2}\Upsigma {\rightarrow}\hbox{X}^{2}\Uppi,\) 0-0) decreases firstly, and rises near the plate electrode, while the emission intensity of \(\hbox{N}_{2}^{+}(\hbox{B}^{2}\Upsigma_{\rm u}^{+} \rightarrow \hbox{X}^{2}\Upsigma_{\rm g}^{+},\) 0-0, 391.4 nm) is nearly constant along the needle to plate direction firstly, and rises sharply near the plate electrode. The vibrational temperature of N2 (C) is almost independent of the pulsed peak voltage and the pulsed repetition rate, but rises with increasing the O2 flow rate and keeps nearly constant in the lengthwise direction. The main physicochemical processes involved are discussed.  相似文献   

20.
A glow discharge polymer (GDP) was fabricated using trans-2-butene (T2B) and hydrogen (H2) via a plasma-enhanced chemical vapor deposition (PECVD) system. The uniformity of the GDP films was significantly affected by the radial distribution of the H2/T2B plasma parameters. The plasma properties while discharging by a multi-carbon gas source of mixed H2/T2B were investigated during the GDP deposition process. The main positive ions and ion energy distributions in inductively coupled H2/T2B plasmas were analyzed by energy-resolved mass spectrometer (MS), and the electron density and the effective electron temperature were mainly analyzed using a Langmuir probe. The MS results show that the main positive ions in the plasmas are \({\text{C}}_{ 2} {\text{H}}_{ 4}^{ + }\), \({\text{C}}_{ 2} {\text{H}}_{ 6}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 3}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 6}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 8}^{ + }\), \({\text{C}}_{ 4} {\text{H}}_{ 5}^{ + }\), \({\text{C}}_{ 4} {\text{H}}_{ 1 0}^{ + }\), \({\text{C}}_{ 5} {\text{H}}_{ 5}^{ + }\), and \({\text{C}}_{ 5} {\text{H}}_{ 7}^{ + }\) with mass-to-charge ratios (m/e) of 28, 30, 39, 42, 44, 53, 58, 65, and 67, respectively. For a normalized ion intensity, the relative intensities of saturated CH ions increase with increasing radial distance, while the unsaturated CH ions decrease with increasing radial distance. The ion energy distribution of \({\text{C}}_{ 2} {\text{H}}_{ 6}^{ + }\) (m/e = 30) presents a bimodal structure. Additionally, both the electron density and the effective electron temperature decrease with increasing radial distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号