首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Cellulose/poly-ethylene imine (PEI) composites were prepared by grafting hyperbranched PEI onto cellulose chains in alkali/urea aqueous solvent system through “one step” method. The SEM results showed that the Cellulose/PEI composite maintained porous structure. The Cellulose/PEI composites were tested as Cu(II) adsorbents through thermodynamics and kinetics study. The adsorption process followed pseudo-second-order kinetics equation. The adsorption isotherms could be described by both Langmuir and Freundlich isotherm models. The maximum adsorption amount was calculated to be 285.7 mg/g. The composites showed good stability so that they could be used in a wide range of pH and temperature. Besides, the Cu(II) loaded Cellulose/PEI composite could also be easily regenerated by dilute sulfuric acid and still keep a major adsorption capacity. Finally, the adsorption capacities of Celluloes/PEI composite towards other metal ions, such as Zn(II), Ni(II), Cr(III) and Pb(II), were also demonstrated. It will be a new high-performance and environmental friendly material for sewage disposal and metal pollution treatment with promising developmental potential.  相似文献   

2.
Environmental pollution and energy crisis are two major global challenges to human beings.Recovering energy from wastewater is considered to be one of the effective approaches to address these two issues synchronously.As the main pollutants in wastewater,toxic heavy metal ions are the potential candidates for energy storage devices with pseudocapacitive behaviors.In this study,toxic metal ions of Cr(VI)and Cu(II)are removed efficiently by chitosan coated oxygen-containing functional carbon nanotubes,and the corresponding equilibrium adsorption capacity is 142.1 and 123.7 mg g~(-1).Followed by carbonization of metal ions-adsorbed adsorbents,Cu-and Cr N-loaded carbon composites can be obtained.Electrochemical measurements show that the supercapacitor electrodes based on Cu-and Cr N-loaded carbon composites have specific capacitance of 144.9 and 114.9 F g~(-1)at2 m V s~(-1),with superior electrochemical properties to pure chitosan coated carbon nanotubes after carbonization.This work demonstrates a new strategy for the resource-utilization of other heavy metal ions for energy devices,and also provides a new way to turn environmental pollutants into clean energy.  相似文献   

3.
络合吸附伏安法同时测定多种重金属离子   总被引:1,自引:0,他引:1  
在络合剂亚硝基苯胲 乙醇 乙酸铵体系中,Cr(Ⅵ)、Cd2 、Cu2 、Pb2 、Ni2 等离子都能在汞电极上产生灵敏的阴极络合吸附波,其二次导数伏安峰电流均与离子质量浓度有良好的线性关系,可用于这些离子的定量检测,测定线性范围为Cr(Ⅵ)0.0017~0.67μg mL、Cd2 0.0017~0.117μg mL、Cu2 0.0083~5 8μg mL、Pb2 0.083~1.25μg mL、Ni2 0.17~150μg mL,RSD分别为5.7%、1 3%、1.4%、2 5%和1.6%。方法为工业废水、地表水及生活用水等样品中重金属离子的同时测定提供了可靠、灵敏的检测方法。  相似文献   

4.
螯合吸附材料PAO/SiO_2对重金属离子的螯合吸附行为   总被引:2,自引:0,他引:2  
将丙烯腈接枝聚合在微米级硅胶微粒表面,经偕胺肟化转变,制得了接枝有聚偕胺肟(PAO)的复合型螯合吸附材料PAO/SiO2。本文重点考察了螯合吸附材料PAO/SiO2对几种重金属离子的螯合吸附行为,深入地研究了吸附机理。研究结果表明,偕胺肟基团与重金属离子之间的静电作用与配位螯合作用的协同,导致PAO/SiO2对重金属离子产生强的螯合吸附作用。在可抑制金属离子水解的pH范围内,介质的pH值越高,PAO/SiO2的螯合吸附能力越强;PAO/SiO2对性质不同的金属离子的吸附性能是有差别的,吸附容量的顺序为Cu2+Ni2+Pb2+Cd2+。  相似文献   

5.
Kinetics of adsorption purification of effluences containing heavy metal ions and adsorption of the metal ions under dynamic conditions using various adsorbents, including the products from industrial wastes are studied.  相似文献   

6.
Fritz JS  Kaminski EE 《Talanta》1971,18(5):541-548
The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI).  相似文献   

7.
Porous graphene oxide/chitosan(PGOC) materials were prepared by a unidirectional freeze-drying method.Their porous structure,mechanical property and adsorption for metal ions were investigated.The results show that the incorporation of graphene oxide(GO) significantly increased the compressive strength of the PGOC materials.The saturated adsorption capacity of Pb2+ increased about 31%,up to 99 mg/g when 5 wt%GO was incorporated These biodegradable,nontoxic,efficient PGOC materials will be a potential adsorbent for metal ions in aqueous solution.  相似文献   

8.
Molecularly imprinted polymers (MIPs), prepared by the interaction forces such as forming covalent or non-covalent bonds by crosslinkers and initiators, are new types of specific recognition polymers with particular cavities. This is an ideal class of materials for wastewater treatment because of the particular holes left by the elution process. This review discusses the development process, classification, synthesis principles, systems, and polymerization methods of MIPs. At the same time, the adsorption mechanism of Copper (Cu), Mercury (Hg), Chromium (Cr), Silver (Ag), and Lead (Pb) in the MIPs technique are studied. Finally, some suggestions and prospects for the future development of MIPs are also put forward.  相似文献   

9.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

10.
吕美娇 《化学通报》2017,80(2):164-172,163
石墨烯具有超大的比表面积、较快的载流子迁移速率和优异的电催化活性,广泛用于环境保护与检测领域。过去几年,基于石墨烯的大批高效吸附剂和传感器均被开发并应用于重金属离子的污染治理。本文详细阐述了石墨烯基复合材料在重金属离子去除和检测方面的研究进展,同时比较了不同方法的优缺点,最后对后续研究方向进行了展望。  相似文献   

11.
A series of chelating resins, derived from a macroreticular styrene-divinylbenzene (2%) copolymer beads grafted with various poly(ethylene glycols) HO? (? CH2? CH2? O? )n? H(n = 0, 4, 9, 13) and containing thiol groups as chelating functions, have been synthesized in a three-step reaction sequence. The structure of the functionalized resins was confirmed by IR spectrophotometry, elemental analysis, and differential scanning calorimetry. The complexation behavior of these thiol resins was investigated towards Hg(II), Cu(II), and Pb(II) ions in aqueous solution by a batch equilibration technique. The influence of pH on adsorption capacity was also examined. The adsorption values for metal ions' intake followed the order Hg(II) > Cu(II) > Pb(II). The affinity of these polymers towards Hg(II) ions was so high that the total mercury level in the liquid decreased from 20 ppm to below 10 ppb after 2 h of treatment. Polymers can be regenerated by washing with a solution of hydrochloric acid (6N) and 10% by weight of an aqueous solution of thiourea. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Novel modified pectin for heavy metal adsorption   总被引:2,自引:0,他引:2  
Modified pectin cross-linked with adipic acid, was synthesized and used for heavy metal removal from wastewater. SEM and FTIR were used to investigate its structure and morphology. The modified pectin had a rough, porous phase covered with carboxy groups, resulting a high adsorption capacity. And at the room temperature, the saturated loading capacity for Pb^2+, Cu^2+ and Zn^2+ reached 1.82 retool/g, 1.794 mmol/g and 0.964 retool/g, respectively. The results proved its potential application to remove of the heavy metal.  相似文献   

13.
Magnetic hybrid hydrogels with a novel polymeric coating consisting of chitosan and cellulose were prepared. By coating cellulose and chitosan, we combined the renewability and biocompatibility of cellulose and chitosan as well as the magnetic properties of Fe(3)O(4) to create a hybrid system to adsorb heavy metals.  相似文献   

14.
A review is given on optical means for single shot testing (probing) as well as continuous monitoring (sensing) of heavy metal ions (HMs). Following an introduction into indicator based approaches, we discuss the types of indicator dyes and polymeric supports used, as well as existing sensing schemes for HMs. The wealth of information is compiled in the form of tables and critically reviewed. Notwithstanding the tremendous work performed so far, it is obvious that still severe limitations do exist in terms of selectivity, limits of detection, dynamic ranges, applicability to specific problems, and reversibility. On the other hand, such sensors have found — and will find — their application whenever rapid and cost-effective testing is required, where personnel is scarce or unskilled, and in field tests. Despite their limitations, the number of such sensors (and of irreversible probes) for HMs is likely to increase in future.  相似文献   

15.
Nitrogen-containing cellulose derivatives hydrazinodeoxycellulose (HDC) and carboxyalkyl hydrazinodeoxycelluloses (α- and β-CAHDCs) were prepared from 6-chlorodeoxycellulose (CDC). Their adsorption of divalent transition metal ions was determined from dilute aqueous solutions and compared with that of aminoalkyl celluloses (AmACs) reported previously. HDC scarcely adsorbs metal ions in the pH range of 1–2, whereas α- and β-CAHDCs adsorb metal ions in this pH range. However, the adsorption of metal ions on HDC increases rapidly with increasing pH and HDC more effectively adsorbs metal ions than α- and β-CAHDCs in weakly acidic conditions. The ability to adsorb Cu2+ ions was in the order of AmAC (carbon number in the diamine moiety m = 2) > HDC > α-CAHDC > β-CAHDC in the weakly acidic region. These adsorbents selectively adsorb Cu2+ ions from the solutions containing other metal ions such as Mn2+, Co2+, and Ni2+, and the Irving–Williams series is obeyed in these adsorbent/metal ion systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3359–3363, 1997  相似文献   

16.
Biobased nanofibers are increasingly considered in purification technologies due to their high mechanical properties, high specific surface area, versatile surface chemistry and natural abundance. In this work, cellulose and chitin nanofibers functionalized with carboxylate entities have been prepared from pulp residue (i.e., a waste product from the pulp and paper production) and crab shells, respectively, by chemically modifying the initial raw materials with the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated oxidation reaction followed by mechanical disintegration. A thorough investigation has first been carried out in order to evaluate the copper(II) adsorption capacity of the oxidized nanofibers. UV spectrophotometry, X-ray photoelectron spectroscopy and wavelength dispersive X-rays analysis have been employed as characterization tools for this purpose. Pristine nanofibers presented a relatively low content of negative charges on their surface thus adsorbing a low amount of copper(II). The copper adsorption capacity of the nanofibers was enhanced due to the oxidation treatment since the carboxylate groups introduced on the nanofibers surface constituted negative sites for electrostatic attraction of copper ions (Cu2+). The increase in copper adsorption on the nanofibers correlated both with the pH and carboxylate content and reached maximum values of 135 and 55 mg g?1 for highly oxidized cellulose and chitin nanofibers, respectively. Furthermore, the metal ions could be easily removed from the contaminated nanofibers through a washing procedure in acidic water. Finally, the adsorption capacity of oxidized cellulose nanofibers for other metal ions, such as nickel(II), chromium(III) and zinc(II), was also demonstrated. We conclude that TEMPO oxidized biobased nanofibers from waste resources represent an inexpensive and efficient alternative to classical sorbents for heavy metal ions removal from contaminated water.  相似文献   

17.
Two-dimensional (2D) nanomaterials are promising building blocks for sensors due to their unique physical, chemical, electronic, and optical properties. This review (with 253 references) first summarizes the historical developments of 2D nanomaterials and discusses the advantages of 2D nanomaterials when applied for constructing sensors. Next, their properties are discussed, with subsections on electronic, optical, mechanical and chemical properties. This is followed by an overview on methods for syntheses and the effects of positive and/or negative charges on the properties and in sensing applications. Then, recent advances in 2D nanomaterial-based electrochemical, fluorometric, colorimetric, electrochemiluminescent, photoelectrochemical, and field-effect transistor sensors are discussed. The discussion also includes the preparation of sensing elements, the roles of such nanomaterials, and assay strategies. Finally, on the basis of the current achievements in the field of 2D nanomaterials, the perspectives on the challenges and opportunities for the exploration of 2D nanomaterial-based sensors are put forward.
Graphical Abstract ?
  相似文献   

18.
油页岩飞灰对重金属离子的吸附动力学及热力学   总被引:8,自引:0,他引:8  
采用批式振荡吸附法研究了燃油页岩电厂循环流化床锅炉飞灰对重金属离子Pb2+、Cu2+、Zn2+、Cd2+的吸附动力学及吸附热力学特性,并提出了吸附机理。结果表明,油页岩飞灰对Pb2+、Cu2+、Zn2+、Cd2+的吸附平衡数据符合Langmuir和Freundlich吸附等温方程,但Freundlich方程能够更好地描述吸附等温线。在油页岩飞灰对重金属离子吸附的初始阶段,拉格朗日准一级动力学方程、准二级动力学方程、Elovich方程、粒子内扩散模型均能很好地反映吸附模式,而整个吸附过程则遵循二级反应动力学方程,其吸附过程是液膜扩散和粒子内扩散共同作用的结果。油页岩飞灰对Pb2+、Cu2+、Zn2+、Cd2+的吸附是吸热反应。  相似文献   

19.
A new method using nanoparticle TiO2 as solid-phase extractant coupled with ICP-AES was proposed for simultaneous determination of trace elements. The adsorption behavior of nanometer TiO2 towards Cu, Cr, Mn and Ni was investigated by ICP-AES, and the adsorption pH curves, adsorption isotherms and adsorption capacities were obtained. It was found that the adsorption rates of the metal ions studied were more than 90% in pH 8.0-9.0, and 2.0 mol L-1 HCl was sufficient for complete elution. Nanometer TiO2 possesses a significant capacity for the sorption of the metal ions studied which is higher than the capacity of silica, the commonly used extractant. The method has been applied to the analysis of some environmental samples with satisfactory results.  相似文献   

20.
Functionalized membranes containing carboxylate, phosphate and sulfonate groups were prepared by UV-initiator induced graft polymerization of the functional monomer (acrylic acid, ethylene glycol methacrylate phosphate (EGMP) and 2-acrylamido-2-methyl-1-propane sulfonic acid) with a crosslinker (methylenebisacrylamide) in the pores of poly(propylene) host membranes. The functionalized membranes thus obtained were characterized by gravimetry, FTIR spectroscopy, radiotracers and scanning electron microscopy for the degree of grafting and water uptake, presence of functional groups, ion-exchange capacity, and physical structure of the membranes, respectively. The uptakes of Cs+, Ag+, Sr2+, Cd2+, Hg2+, Zn2+, Eu3+, Am3+, Hf4+ and Pu4+ ions in the functionalized membranes were studied as a function of acidity of the equilibrating aqueous solution. Among the functionalized membranes prepared in the present work, the EGMP-grafted membrane (with phosphate groups) showed acid concentration dependent selectivity towards multivalent metal ions like Eu3+, Am3+, Hf4+ and Pu4+. The solvent extraction studies of EGMP monomer in methyl isobutyl ketone (MIBK) solvent indicated that divalent and trivalent metal ions form complexes with EGMP in 1:2 proportion, but the distribution coefficients of trivalent metal ions were significantly higher that for the divalent ions. The uptakes of Eu3+ ions in monomeric EGMP (dissolved in MIBK) and polymeric EGMP (in the forms of crosslinked gel and membrane) were studied as a function of concentration of H+ ions in the equilibrating solution. This study indicated that polymeric EGMP has better binding ability towards Eu3+ as compared to monomeric EGMP. The variation of distribution coefficients of Eu3+/Am3+ in gel and membrane as a function of H+ ion concentration in the equilibrating aqueous solution indicated that ionic species held in the membrane and gel were not same. These results indicated that proximity of functional groups (phosphate) plays an important role in metal ion binding with polymeric EGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号