首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Polyoxometalate (POM) presents great potential in oxidative desulfurization (ODS) reaction. However, the high dissolubility of POM in common solvents makes it difficult to recycle. Besides, the small specific surface area of POM also limits the interaction between them and the substrate. Depositing polyoxometalates onto three-dimensional (3D) network structured materials could largely expand the application of POM. Here, the surfaces of cellulose nanofibrils (CNFs) were modified with very few (3-Aminopropyl) trimethoxysilane (APTS) to endow positive charges on the surfaces of CNFs, and then phosphotungstic acid (PTA) was loaded to obtain the aerogel A-CNF/PTA as the ODS catalyst. FT-IR indicated the successful deposition of PTA onto aminosilane modified CNF surfaces. UV-VIS further suggested the stability of PTA in the aerogels. BET and SEM results suggested the increased specific surface area and the relatively uniform 3D network structure of the prepared aerogels. TGA analysis indicated that the thermal stability of the aerogel A-CNF/PTA50% was a little higher than that of the pure CNF aerogel. Most importantly, the aerogel A-CNF/PTA50% showed good catalytic performance for ODS. Catalysis results showed that the substrate conversion rate of the aerogel A-CNF/PTA50% reached 100% within 120 min at room temperature. Even after five cycles, the substrate conversion rate of the aerogel A-CNF/PTA50% still reached 91.2% during the dynamic catalytic process. This work provides a scalable and facile way to stably deposit POM onto 3D structured materials.  相似文献   

2.
The work presents a synthetic approach that combines methods of metal vapor synthesis (MVS), gelation and supercritical drying in order to obtain chitosan aerogels containing silver nanoparticles. On the first stage, two types of silver organosols were prepared via the eco-sustainable MVS method. Then the prepared silver organosols were used to modify chitosan powders for producing metal-chitosan powder composites. Gelation of the powder composites was performed in oxalic acid at elevated temperatures. Supercritical drying of the gels was implemented in order to preserve the formed porous structures. Thus, the chitosan powders modified with MVS-produced silver nanoparticles were used to prepare metal-chitosan aerogels. Characterization of the structure and the morphology of both powder and aerogel silver-chitosan composites was conducted by means of low temperature nitrogen adsorption, X-ray photoelectron spectroscopy, X-ray powder diffraction, small-angle X-ray scattering, SEM and TEM. Changes in the structure and morphology of silver nanoparticles between powder and aerogel composites were analyzed.  相似文献   

3.
In this paper, a new method is introduced for producing multi-functional cellulose nanofibers in order to achieve the biodegradable materials for various applications with a minimal amount of potentially toxic materials. Cellulose nanofibers (CNFs) were fabricated by electrospinning cellulose acetate solution followed by deacetylation. The CNFs were then treated with silver nitrate, ammonia, and sodium hydroxide and subsequently with dopamine as reducing and adhesive agent. Ag ions on the CNF surface were photo-reduced to Ag nanoparticles (NPs) using UVA irradiation to produce a dense layer of silver nanoparticles on the nanofibers. This is based on the simultaneous formation of polydopamine and Ag NPs on CNFs. Overall, this is a fast, simple, and efficient procedure that takes place in a conventional method at ambient temperature. The crystalline structure of CNFs decorated with AgNPs was studied by X-ray diffraction. Field-emission scanning electron microscopy and energy-dispersive X-ray patterns showed uniform distribution of silver nanoparticles on the CNF surface. Incorporation of AgNPs on the CNF surface via dopamine improved the electrical conductivity and also the tensile strength of the nanomat. The CNFs decorated with AgNPs exhibited a low electrical resistivity around 35 KΩ/square and a tensile strength of 87% higher than untreated CNFs.  相似文献   

4.
Cross-linked cellulose nanofibril (CNF) aerogel with positive and negative surface charge was prepared. For the surface charge modification of CNF from its intrinsic negative charge to positive charge, glycidyltrimethylammonium chloride was used. To stabilize the network structure of CNF aerogel in aqueous condition, maleic acid and sodium hypophosphite cross-linking treatment was applied. The ion adsorption properties of positive and negative charged cross-linked CNF aerogels were evaluated using the Langmuir adsorption model, and it was affected by pH of the ion solution. The maximum ion adsorption capacity of negatively charged cross-linked CNF aerogel was 0.79 mmol/g for the nickel cation while that of the positively charged cross-linked aerogel was 0.62 mmol/g for the permanganate anion.  相似文献   

5.
PtRu alloy nanoparticles (24 +/- 1 wt %, Ru/Pt atomic ratios = 0.91-0.97) supported on carbon nanofibers (CNFs) were prepared within a few minutes by using a microwave-polyol method. Three types of CNFs with very different surface structures, such as platelet, herringbone, and tubular ones, were used as new carbon supports. The dependence of particles sizes and electrochemical properties on the structures of CNFs was examined. It was found that the methanol fuel cell activities of PtRu/CNF catalysts were in the order of platelet > tubular > herringbone. The methanol fuel cell activities of PtRu/CNFs measured at 60 degrees C were 1.7-3.0 times higher than that of a standard PtRu (29 wt %, Ru/Pt atomic ratio = 0.92) catalyst loaded on carbon black (Vulcan XC72R) support. The best electrocatalytic activity was obtained for the platelet CNF, which is characterized by its edge surface and high graphitization degree.  相似文献   

6.
In this work, the influence of cellulose nanofibers (CNFs) on the rheological behavior of silica-based shear-thickening fluid (STF) is investigated. CNFs of 150–200 nm in diameter were extracted from cotton fibers using a supermasscolloider. CNF-reinforced STF of different concentrations (0.1–0.3 wt.%) was prepared via an ultrasonication technique. The presence of CNFs and their interaction with the silica nanoparticles in the STF were analyzed using SEM and FTIR. The addition of a minute quantity of CNF to the STF (0.3% CNF-reinforced STF) caused a marked increase in the peak viscosity, from 36.8 (unmodified STF) to 139.0 Pa s (0.2% CNF-reinforced STF), and a concomitant decrease in the critical shear rate from 33.45 to 14.8 s?1 . The presence of a large number of hydroxyl groups on the CNFs enhanced their interaction with the nanoparticles via hydrogen bonding, which induced shear thickening. The mechanism of the interaction between silica nanoparticles and CNF was also demonstrated. Oscillatory dynamic rheological analysis showed that the addition of even a small amount of CNF led to higher elastic behavior in the system at lower shear rates. In contrast, a more viscous nature was demonstrated at higher angular frequencies. As the concentration of  nanofibers in the STFs increased, the crossover point between storage and loss modulus shifted to higher angular frequencies, implying stronger interaction between the constituents of the STF. The dynamic viscosity profile of all samples also exhibited shear-thickening behavior.  相似文献   

7.
Ru/CNFs 催化剂催化氨分解制氢   总被引:1,自引:0,他引:1  
 研究了鱼骨式碳纤维 (CNFs) 和管式碳纤维 (CNTs) 负载 Ru 催化剂的氨分解反应活性. 结果表明, Ru/CNFs 催化剂上氨分解活性高于 Ru/CNTs 催化剂. 通过改变 Ru 负载量或载体表面的含氧基团来调节 Ru 的粒径. Ru 的活性位随着 Ru 颗粒尺寸的增大而增加. CNFs 上的含氧基团对 Ru 颗粒的氨分解活性影响很大. 在相同粒径的 Ru 颗粒上, CNFs 表面的含氧基团增加了 Ru 的活性.  相似文献   

8.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with Ir4(CO)12 in mesitylene at 165 °C provided the corresponding CNF‐supported iridium nanoparticles, Ir/CNFs (Ir content=2.3–2.6 wt. %). Transmission electron microscopy (TEM) studies of these Ir/CNF samples revealed that size‐controlled Ir nanoparticles (average particle size of 1.1–1.5 nm) existed on the CNFs. Among the three Ir/CNF samples, Ir/CNF‐T showed an excellent catalytic activity and chemoselectivity towards hydrogenation of functionalized nitroarenes and imines; the corresponding aniline derivatives were obtained with high turnover numbers at ambient temperature under 10 atm of H2, and the catalyst is reusable. Ir/CNF‐T was also effective for the reductive N‐alkylation of anilines with carbonyl compounds.  相似文献   

9.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF‐supported ruthenium nanoparticles, Ru/CNFs (Ru content=1.1–3.8 wt %). TEM studies of these Ru/CNFs revealed that size‐controlled Ru nanoparticles (2–4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs: on the edge of the graphite layers (CNF‐P), in the tubes and on the surface (CNF‐T), and between the layers and on the edge (CNF‐H). Among these Ru/CNFs, Ru/CNF‐P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180 000 (mol toluene) (mol Ru)?1. Ru/CNF‐P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C? O and C? N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.  相似文献   

10.
Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.  相似文献   

11.
Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.  相似文献   

12.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

13.
A commercial lyophilized lipase of Burkholderia cepacia, from Amano, was encapsulated in silica aerogels reinforced with silica quartz fiber felt. This biocatalyst was applied in the direct transesterification of sunflower seed oil with ethanol, without any other solvent. When the molar ratio of ethanol to oil was two or three, the oil transformation kinetics was found to be very slow after the formation of 1 mole of fatty ethyl ester per mole of initial triglyceride. For a molar proportion of ethanol to oil ≈1, the recycling activity also decreased gradually in successive tests to reach an activity ≈7% of the initial activity, during the 5th test. Textural and structural analysis of the aerogels before and after catalytic tests showed that this deterioration was associated with a modification of the aerogel, by preferential adsorption of glycerol or possibly other transesterification products such as diglycerides. Besides, it is proposed that one of the cause for the aerogel loss of activity at an initial molar ratio of ethanol:oil of 3:1 was due to a progressive inhibition of the enzyme by excess adsorbed ethanol. The aerogel samples were also compared to a commercial product of lipase immobilized on polymer beads, from Fluka. The silica aerogels somewhat improved, to a limited extent, the activity during recycling.  相似文献   

14.
We recently discovered that self-organized superstructures of the heme protein cytochrome c (cyt. c) are nucleated in buffer by gold nanoparticles. The protein molecules within the superstructure survive both silica sol-gel encapsulation and drying from supercritical carbon dioxide to form air-filled biocomposite aerogels that exhibit gas-phase binding activity for nitric oxide. In this investigation, we report that viable proteins are present in biocomposite aerogels when the nucleating metal nanoparticle is silver rather than gold. Silver colloids were synthesized via reduction of an aqueous solution of Ag+ using either citrate or borohydride reductants. As determined by transmission electron microscopy and UV-visible absorption spectroscopy, the silver nanoparticles vary in size and shape depending on the synthetic route, which affects the fraction of cyt. c that survives the processing necessary to form a biocomposite aerogel. Silver colloids synthesized via the citrate preparation are polydisperse, with sizes ranging from 1 to 100 nm, and lead to low cyt. c viability in the dried bioaerogels (approximately 15%). Protein superstructures nucleated at approximately 10-nm Ag colloids prepared via the borohydride route, including citrate stabilization of the borohydride-reduced metal, retain significant protein viability within the bioaerogels (approximately 45%).  相似文献   

15.
Thiol-functionalized MCM-41 type mesoporous silica particles(MSPs) were prepared and loaded with silver chloride to act as antibacterial agents. The antibacterial activity of the silver chloride loaded MSPs(AgCI-MSPs) was evaluated by the minimum bactericidal concentration(MBC) against Candida albieans(ATCC 10231). The AgC1-MSPs with the highest antibacterial activity were then dispersed in hybrid coatings with different mass ratios to fabricate antibacterial coatings. The antibacterial activity of the coatings was tested against Candida albicans{ATCC 10231) and Streptococcus mutans(ATCC 25175). The resulting antibacterial coatings exhibited high antibacterial activity, good adhesion to the substrate and high hardness.  相似文献   

16.
Herein we present the synthesis of anatase–silica aerogels based on the controlled gelation of preformed nanoparticle mixtures. The monolithic aerogels with macroscopic dimensions show large specific surface areas, and high and uniform porosities. The major advantage of such a particle-based approach is the great flexibility in pre-defining the compositional and structural features of the final aerogels before the gelation process by fine-tuning the properties of the titania and silica building blocks (e.g., size, composition and crystallinity) and their relative ratio in the dispersion. Specific surface functionalization enables control over the interaction between the nanoparticles and thus over their distribution in the aerogel. Positively charged titania nanoparticles are co-assembled with negatively charged Stoeber particles, resulting in a binary aerogel with a crystalline anatase and amorphous silica framework directly after supercritical drying without any calcination step. Titania–silica aerogels combine the photocatalytic activity of the anatase nanoparticles with the extensive silica chemistry available for silica surface functionalization.  相似文献   

17.
One-dimensional carbon nano-materials, in particular carbon nanotubes (CNTs) and carbon nanofibers (CNFs), are of scientific and technological interest due to their satisfactory properties and ability to serve as templates for directed assembly. In this work, linear high density polyethylene (PE) was periodically decorated on CNTs and CNFs using a supercritical carbon dioxide (scCO2)antisolvent-induced polymer epitaxy (SAIPE) method, leading to nano-hybrid shish-kebab (NHSK) structures. The formation mechanism of different morphologies of PE lamellae on CNTs and CNFs has been discussed. Palladium nanoparticles were synthesized and immobilized on the PE/CNF NHSK structure with the assistance of scCO2. The obtained hierarchical nano-hybrid architecture may find applications in microfabrication and other related fields.  相似文献   

18.
A detailed study of CdSe aerogels prepared by oxidative aggregation of primary nanoparticles (prepared at room temperature and high temperature conditions, >250 degrees C), followed by CO2 supercritical drying, is described. The resultant materials are mesoporous, with an interconnected network of colloidal nanoparticles, and exhibit BET surface areas up to 224 m2/g and BJH average pore diameters in the range of 16-32 nm. Powder X-ray diffraction studies indicate that these materials retain the crystal structure of the primary nanoparticles, with a slight increase in primary particle size upon gelation and aerogel formation. Optical band gap measurements and photoluminescence studies show that the as-prepared aerogels retain the quantum-confined optical properties of the nanoparticle building blocks despite being connected into a 3-D network. The specific optical characteristics of the aerogel can be further modified by surface ligand exchange at the wet-gel stage, without destroying the gel network.  相似文献   

19.
以AgNO3为金属源,通过乙醇将与聚N-异丙基丙烯酰胺接枝聚丙烯腈/聚苯乙烯(PNIPAAm-g-PAN/PSt)聚合物微球表面酰胺基团配位的银离子(Ag+)还原,一步法制备了PNIPAAm-g-PAN/PSt载银复合微球。通过傅立叶变换红外(FTIR)和紫外-可见光光谱表征发现,由Ag+还原所得的Ag纳米颗粒被成功地固载在PNIPAAm-g-PAN/PSt 微球上;用透射电子显微镜(TEM)对载银微球的大小和形态进行了表征;热重分析(TGA)结果表明,固载在微球表面的银纳米颗粒的含量(质量分数)为12%;抗菌实验结果表明,所制备的载银微球具有抗革兰氏阴性菌的活性。  相似文献   

20.
Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis. After immobilization on gold nanoparticles, recombinant catalase activity was found to be lower than that of the same amount of enzyme in aqueous solution. However, after 10 days of storage at room temperature, the activity of catalase immobilized on gold nanoparticles (AuNPs) of 13 and 20 nm and coverage of 133% was 68 and 83% greater than catalase in aqueous solution, respectively. During 10 days of experiment, percentage activity of catalase immobilized on those gold nanoparticles was higher in comparison to CAT in aqueous solution. Catalase immobilized on silver nanoparticles did not lose activity as significantly as catalase immobilized on AuNPs. Those results confirm the ability to produce recombinant human enzymes in a bacterial expression system and its potential use while immobilized on silver or gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号