首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Composite chitosan nanofibers containing 20 wt % chitin nanofibrils and 10 wt % PEO are obtained via the electrospinning method. Additions of 0.5–20.0 wt % chitin nanofibrils into chitosan solutions with concentrations of 3–7 wt % in acetic acid (70 vol %) insignificantly increase the electrical conductivity, surface-tension coefficient, and viscosity of these mixed solutions. Decreases in the viscosities of chitosan solutions containing chitin nanofibrils with increases in shear rate provide evidence for the structuring of solutions and the orientation of chitosan macromolecules and chitin nanofibrils in the shear flow. The effects of shear stress and a high-voltage electric field on chitosan solutions containing chitin nanofibrils and PEO result in a decrease in the imperfection of composite nanofibers. The introduction of chitin nanofibrils allows the content of PEO in the composite nanofibers to be reduced.  相似文献   

2.
By means of the electrospinning technique we have successfully synthesized cyclodextrin (CD) functionalized polyethylene oxide (PEO) nanofibers (PEO/CD) with the ultimate goal to develop functional nanowebs. Three different types of CDs; α-CD, β-CD and γ-CD are incorporated individually in electrospun PEO nanofibers. The aqueous solutions containing different amount of PEO (3%, 3.5% and 4% (w/v), with respect to solvent) and CDs (25% and 50% (w/w), with respect to PEO) are electrospun and bead-free nanofibers are obtained. The presence of the CDs in the PEO solutions is found to facilitate the electrospinning of bead-free nanofibers from the lower polymer concentrations and this behavior is attributed to the high conductivity and viscosity of the PEO/CD solutions. The presence of CDs in the electrospun PEO nanofibers is confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The 2-D X-ray diffraction (XRD) spectra of PEO/CD nanowebs did not show any significant diffraction peaks for CDs indicating that the CD molecules are distributed within the polymer matrix without any phase separated crystalline aggregates.  相似文献   

3.
Poly(ethylene oxide) (PEO) is known for facilitating the electrospinning of biopolymer solutions, which are otherwise not electrospinnable. The objective of this study was to improve the understanding of the positive effects of PEO on the electrospinning of whey protein isolate (WPI) solutions under different pH conditions. Alterations in protein secondary structure and polymer solution properties (viscosity, conductivity, and dynamic surface tension), as induced by pH changes, significantly affected the electrospinning behavior of WPI/PEO (10% w/w: 0.4% w/w PEO) solutions. Acidic solutions resulted in smooth fibers (707 ± 105 nm) while neutral solutions produced spheres (2.0 ± 1.0 μm) linked with ultrafine fibers (138 ± 32 nm). In comparison, alkaline solutions produced fibers (191 ± 36 nm) that were embedded with spindle‐like beads (1.0 ± 0.5 μm). 13C NMR and FTIR spectroscopies showed that the increase in random coil and α‐helix secondary structures in WPI were the main contributors to the formation of bead‐less electrospun fibers. The electrospinning‐enabling properties of PEO on aqueous WPI solutions were attributed to physical chain entanglement between the two polymers, rather than specific polymer–polymer interactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Fabrication of electrospun chitosan nanofibers is still a controversial issue in publications. Although regarding the lots of reports, mixtures of chitosan with a hydrophilic synthetic polymer such as polyethylene oxide (PEO) have been electrospun successfully, abundance of partly contradictory protocols in which one variable has been surveyed in each study is unfortunately baffling. In the present study, influence of three considerable parameters including the average molecular weight of chitosan, chitosan solution concentration and the mass ratio of polyethylene oxide to chitosan at the mixtures on electrospinning possibility as well as the quality of as-spun fibers is investigated. Eventually, the necessities for obtaining the best results are introduced followed by further analysis of optimized nanofibers using atomic force microscopy. According to our results, the blend solutions prepared from the low molecular weight (LMW) chitosan and PEO are efficient for reproducible production of bead-free electrospun nanofibers even in low proportion of polyethylene oxide.  相似文献   

5.
New nanofibers containing poly(vinyl pyrrolidone)-iodine complex (PVP-iodine) were obtained by electrospinning in order to prepare materials suitable for wound dressings. Different approaches were used: a one-step method based on electrospinning of PVP-iodine or poly(ethylene oxide)/PVP-iodine solutions and a three-step method based on electrospinning of PVP or poly(ethylene oxide)/PVP mixed solutions followed by photo-mediated crosslinking of the obtained nanofibers and subsequent complexation with iodine. The average diameters of the fibers were in the range 150-470 nm depending on the composition and on the applied field strength (AFS) and increased with increasing the amount of PEO in the spinning solutions. Higher AFS resulted in greater fiber diameter and in size distribution broadening. Photo-mediated crosslinking in the presence of 4,4′-diazidostilbene-2,2′-disulfonic acid disodium salt successfully stabilized the electrospun PVP and PEO/PVP nanofibers against water and water vapor.  相似文献   

6.
Hybrid nanofibers from chitosan or N‐carboxyethylchitosan (CECh) and silver nanoparticles (AgNPs) were prepared by electrospinning using HCOOH as a solvent. AgNPs were synthesized in situ in the spinning solution. HCOOH slowed down the cross‐linking of the polysaccharides with GA enabling the reactive electrospinning in the presence of poly(ethylene oxide) (PEO). EDX analyses showed that AgNPs are uniformly dispersed in the nanofibers. Since AgNPs hampered the cross‐linking of chitosan and CECh with GA in the hybrid fibers, the imparting of water insolubility to the fibers was achieved at a second stage using GA vapors. The surface of chitosan/PEO/AgNPs nanofibers was enriched in chitosan and 15 wt.‐% of the incorporated AgNPs were on the fiber surface as evidenced by XPS.

  相似文献   


7.
Summary: Electrically conducting polypyrrole‐poly(ethylene oxide) (PPy‐PEO) composite nanofibers are fabricated via a two‐step process. First, FeCl3‐containing PEO nanofibers are produced by electrospinning. Second, the PEO‐FeCl3 electrospun fibers are exposed to pyrrole vapor for the synthesis of polypyrrole. The vapor phase polymerization occurs through the diffusion of pyrrole monomer into the nanofibers. The collected non‐woven fiber mat is composed of 96 ± 30 nm diameter PPy‐PEO nanofibers. FT‐IR, XPS, and conductivity measurements confirm polypyrrole synthesis in the nanofiber.

An SEM image of the PPy‐PEO composite nanofibers. The scale bar in the image is 500 nm.  相似文献   


8.
Polymer fibers composed of poly(ethylene oxide) (PEO) and nanoclay were fabricated by electrospinning. The morphology of the composite nanofibers was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which showed aligned nanoclays in the fibers. Polarized Fourier transform infrared (FT-IR) spectroscopy revealed that the PEO chains in the composite fibers exhibit a higher degree of orientation than that in PEO nanofibers containing no nanoclay. It is believed that spatial confinement is present in the electrospun nanofibers, which results in the enforcement of the mutual restriction. The anisotropic hierarchical nanostructure may have potential applications in optics, mechanical materials, and biomedical materials for cell culture.  相似文献   

9.
Fairly uniform chitosan (CS)/poly(ethylene oxide) (PEO) ultrafine fibers containing silver nanoparticles (AgNPs) were successfully prepared by electrospinning of CS/PEO solutions containing Ag/CS colloids by means of in situ chemical reduction of Ag ions. The presence of AgNPs in the electrospun ultrafine fibers was confirmed by X-ray diffraction patterns. The AgNPs were evenly distributed in CS/PEO ultrafine fibers with the size less than 5 nm observed under a transmission electron microscope. X-ray photoelectron spectroscopy suggested that the existence of Ag―O bond in the composite ultrafine fibers led to the tight combination between Ag and CS. Evaluation of antimicrobial activities of the electrospun Ag/CS/PEO fibrous membranes against Escherichia coli showed that the AgNPs in the ultrafine fibers significantly enhanced the inactivation of bacteria.  相似文献   

10.
The electrospinning of polymer-free nanofibers from highly concentrated (160%, w/v) aqueous solutions of hydroxypropyl-β-cyclodextrin (HPβCD) and its inclusion complexes with triclosan (HPβCD/triclosan-IC) was achieved successfully. The dynamic light scattering (DLS) and rheology measurements indicated that the presence of considerable HPβCD aggregates and the high solution viscosity were the key factors in obtaining electrospun HPβCD and HPβCD/triclosan-IC nanofibers without the use of any polymeric carrier. The HPβCD and HPβCD/triclosan-IC solutions containing 20% (w/w) urea yielded no fibers but only beads and splashes because of the depression of the self-aggregation of the HPβCD. The inclusion complexation of triclosan with HPβCD was studied by isothermal titration calorimetry (ITC) and turbidity measurements. The characteristics of the HPβCD and HPβCD/triclosan-IC nanofibers were investigated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). It was found that the electrospinning of HPβCD/triclosan-IC solution having a 1:1 molar ratio was optimal for obtaining nanofibers without any uncomplexed guest molecules.  相似文献   

11.
Incorporation of mammalian cells into nanofibers (cell electrospinning) and multilayered cell-nanofiber structures (cell layering) via electrospinning are promising techniques for tissue engineering applications. We investigate the viability of 3T3-L1 mouse fibroblasts after incorporation into poly(vinyl alcohol) nanofibers and multilayering with poly(caprolactone) nanofibers and analyze the possible factors that affect cell viability. We observe that cells do not survive cell electrospinning but survive cell layering. Assessing the factors involved in cell electrospinning, we find that dehydration and fiber stretching are the main causes of cell death. In cell layering, the choice of solvent is critical, as residual solvent in the electrospun fibers could be detrimental to the cells.  相似文献   

12.
Carbon nanofibers with new structural features, e.g. nanoporosity, hollow, U-shape cross-section, were generated by utilizing the phase separation behavior of polymer additive with polyacrylonitrile (PAN). The approach involved the formation of precursor fibers by electrospinning of binary mixtures of PAN with poly(ethylene oxide) (PEO), cellulose acetate (CA) or poly(methyl methacrylate) (PMMA), the removal of the polymer and the carbonization of the remaining PAN. The carbon nanofiber yield was ca 50% of PAN in all cases. Nanoporous carbon nanofibers with an average diameter of 100 nm were generated from the water treated PAN/PEO precursors. Multi-channel hollow fibers (90-190 nm diameters) were produced from the acetone treated PAN/CA precursors. Carbon fibers produced from the chloroform treated PAN/PMMA precursors were 250-400 nm in diameters and consisted of varied hollow structures, i.e., hollow and U-shape cross-sections from those containing 30% and 50% PAN, respectively, and multi-channel hollow fibers from the 70/30 PAN/PMMA precursor. Carbonization of equal-mass PAN/PMMA as-spun fibers also produced similarly U-shape cross-sections as the chloroform treated ones, showing promise of direct carbonization. This simple and yet versatile approach to create new structural features in carbonized fibers has shown to depend on the distinct phase separation as well as the pyrolytic behaviors of the second polymer component.  相似文献   

13.
For the first time, a nanocomposite of poly(vinylidene fluoride)/cellulose nanocrystal (PVDF/CNC) is developed as a piezoelectric energy harvester. This is implemented through electrospinning of PVDF solutions containing different levels of CNC loading, i.e., 0, 1, 3 and 5 % with respect to PVDF weight. Analytical techniques including DSC, FTIR and WAXD are conducted to monitor the polymorphism evolution within electrospun nanocomposites as the CNC content is varied. The results imply that CNCs at the optimum concentration (3 and 5 %) can effectively nucleate β crystalline phases. The nucleation of α crystalline phases is also prevented when CNCs are present within the structure of PVDF electrospun fibers. These changes in polymorphism give PVDF/CNC nanocomposites enhanced piezoelectric characteristics compared to pure PVDF nanofibers. We have demonstrated that the developed nanocomposites can charge a 33-μF capacitor over 6 V and light up a commercial LED for more than 30 s. It is envisaged that the PVDF/CNC nanocomposites provide the opportunity for the development of efficient electrical generators as self-powering devices to charge portable electronics.  相似文献   

14.
To improve the hydrophilic properties of poly(ε‐caprolactone) (PCL) nano/microfiber webs for tissue engineering scaffolds, PCL webs of various structures were fabricated by electrospinning with single or double nozzles connected to an auxiliary electrode. Surface‐modified and layered PCL fiber webs were made by including water‐soluble poly(ethylene oxide) (PEO) in the PCL electrospinning solution (single‐nozzle method) or by electrospinning of alternating PCL and PEO solutions using two nozzles (double‐nozzle method), respectively. When the PEO component within the resulting webs was removed by dissolution with distilled water, the remnant PCL webs exhibited two distinct structures. Those made by the single‐nozzle method consisted of nanofibers with high surface roughness, whereas those made by the double‐nozzle method consisted of stacked layers of PCL nanofibers. Both types of structured PCL web showed improved hydrophilicity characteristics compared with those of nanofiber webs generated from a pure PCL solution using a typical electrospinning process. Cell culturing and scanning electron microscopy showed that the interactions between human dermal fibroblasts and the structured PCL scaffolds were very favorable. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2038–2045, 2007  相似文献   

15.
Camphor‐10‐sulfonic acid (HCSA) doped polyaniline (PANI)/poly(ethylene oxide) (PEO) composite nanofibers with different compositions (12 to 52 wt.% of PANI) were synthesized by an electrospinning method and their properties including optical, electrical and sensing were systematically investigated. FT‐IR shows that an increase of IR absorbance ratios of aromatic C? C stretching vibration of benzenoid rings of PANI to C? O? C symmetric vibrational modes of PEO confirmed that the PANI content in nanofiber mats increased proportionally with increase in PANI content in electrospinning solution. The band gap of PANI was determined to be 2.5 eV using UV‐Vis spectroscopy. The electrical conductivities of the nanofibers increased with an increase in the PANI content in the nanofibers. Additionally, the sensitivity toward NH3 increased as the PANI content increased, but branched nanofibers reduced sensing response. The humidity sensitivity changed from positive to negative as the PANI content increased. The electron transport mechanism was studied by measuring the temperature dependence electrical resistivity. The negative temperature coefficient of resistance revealed a semiconducting behavior for the PANI/PEO nanofibers. The activation energy, calculated by Arrhenius plot, increased as the PANI content decreased. The power law indicated that electrons were being transported in a three dimensional matrix, and the longer hopping distance required more hopping energy for electron transport.  相似文献   

16.
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in‐depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four‐point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   

18.
孙康  王丽平 《应用化学》2011,28(2):123-130
对纯壳聚糖、壳聚糖和聚合物的混合物、壳聚糖和蛋白质的混合物、壳聚糖衍生物、壳聚糖和无机纳米颗粒的混合物等静电纺纳米纤维的制备和特点进行了综述,对部分壳聚糖纳米纤维的应用进行了简述。  相似文献   

19.
Nonwoven chitosan (CS) nanofiber mats were successfully prepared by the electrospinning of the mixture of CS and poly(ethylene oxide) (PEO) in acetic acid aqueous solution. The CS/PEO fiber mats were treated with glutaraldehyde aqueous solution to stabilize fibers in solution. The concentration of glutaraldehyde is important for incorporating swelling properties in the cross-linked CS/PEO fiber mats. The cross-linked CS/PEO fibers (CCS/PEO fibers) were then used as supports for palladium catalysts in the Mizoroki–Heck reaction. The results of the study demonstrated that the catalytic activities of Pd catalyst supported on CCS/PEO fiber (Pd-CCS/PEO fiber) were highly dependent on the concentration of glutaraldehyde in the cross-linking process. Density functional theory (DFT) calculations indicated that the Schiff bond formed between CS and glutaraldehyde could reduce the energy needed to form a chelate complex between the CCS/PEO fibers and palladium active species. This in turn could decrease the activation energy of the Mizoroki–Heck reactions which occur in the presence of the Pd-CCS/PEO fiber catalysts. The optimized Pd-CCS/PEO fiber catalyst was very efficient and stable in the Mizoroki–Heck reaction of aromatic iodides with olefins.  相似文献   

20.
Electrospun polymer nanofibers are gaining increasing importance in tissue engineering, wound dressing and drug delivery. Here, we present a thorough rheological study of polymer solutions in the bulk and at the interface to find correlations between those properties and the electrospinnability of the solutions and the morphology of the resultant nanofibers. Our results indicate that blended solutions of chitosan or alginate with poly(ethylene oxide) (PEO) are appropriate for electrospinning when they form conductive, unstructured fluids displaying plasticity, rather than elasticity, in the bulk and at the interface. The interfacial rheological parameters are three orders of magnitude lower than those in the bulk. We demonstrate for the first time that interfacial, rather than bulk, rheological parameters show improved correlation and can be used to predict the success of the electrospinning process. Using the interfacial parameters of samples with homologous compositions, different groups of solutions can be identified that form smooth nanofibers. However, rheological parameters of the bulk and at the interface provide complimentary information. The bulk parameters are determined by polymer concentration and directly affect jet initiation, while the interfacial behaviour determines the continuation of the jet and fibre formation. We propose that interfacial parameters are indispensible tools for the design of electrospinning experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号