首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four species of delignified woodchips with about 1 % lignin content (Chlorite–Woodchips) and a series of softwood pulps with different lignin contents were prepared by sodium chlorite delignification. After mechanical defibration, some Chlorite–Woodchips were directly subjected to dissolution treatment in NaOH/urea solvent; the others were first treated with NaOH solution to remove the hemicellulose to obtain NaOH–Chlorite–Woodchips or oxidized with potassium permanganate (OPP) to remove lignin completely to obtain OPP–Chlorite–Woodchips, and then subjected to the dissolution in NaOH/urea solvent. The results showed that the dissolved proportion of the Chlorite–Woodchips ranged from 36 to 46 %, the dissolved proportion of glucan was within 12 %, and most of the hemicellulose was dissolved in NaOH/urea solvent. Compared with Chlorite–Woodchips, the dissolved proportion of NaOH–Chlorite–Woodchips was lower, but their dissolved proportion of glucan was higher. After further permanganate delignification, both the dissolved proportion of the OPP–Chlorite–Woodchips and the dissolved proportion of glucan of the OPP–Chlorite–Woodchips were higher than those of the Chlorite–Woodchips. However, the dissolved proportion of glucan was still limited to only 15–30 %. The effect of the lignin content of softwood pulps on their dissolution is complicated. With the decrease of the lignin content of softwood pulp from 6.9 to 2.8 %, the dissolved proportion of pulp increased from 14 to 26 %. However, further reduction of lignin content from 2.8 to 0.3 % led to a decrease in the dissolved proportion of pulp from 26 to 12 %. The dissolved proportion of glucan followed the same tendency. These results indicated that the dissolution of wood cellulose in NaOH/urea solvent is not simply controlled by the hemicellulose and lignin contents, but also by some other factors.  相似文献   

2.
We investigated the crystal structure of alkali-celluloses, Na-cellulose IIA and II(Cu), formerly known as Na-cellulose IIB, by synchrotron X-ray diffraction. Na-cellulose IIA, formed from cellulose I by high-concentration NaOH treatment, has a fiber repeat of 15 Å and a threefold-like helical conformation. Na-cellulose II(Cu), prepared by treating cellulose I with copper-saturated alkali solution, also has a fiber repeat of 15 Å with threefold helical symmetry. Incorporation of Cu(II) ions into cellulose was confirmed by multiwavelength anomalous diffraction. Monitoring by X-ray diffraction revealed that the formation of this complex from cellulose I is remarkably slow, probably because of the involvement of copper ion. The stability of alkali-cellulose II(Cu) was tested to estimate the influence of the presence of copper in the crystal. Na-cellulose II(Cu) characteristically dissolved in aqueous ammonia solution, indicating strong coordination of copper ion to cellulose.  相似文献   

3.
The drying process in typical pulp production generates strong hydrogen bonding between cellulose microfibrils in refined cell walls and increases the difficulty in obtaining uniform cellulose nanofibers. To investigate the efficacy of alkaline treatment for cellulose nanofibrillation, this study applied a bead-milling method in NaOH solutions for the nanofibrillation of dried pulps. NaOH treatments loosened the hydrogen bonding between cellulose microfibrils in dried pulps and allowed preparation of cellulose nanofibers in 8 % NaOH with a width of approximately 12–20 nm and a cellulose I crystal form. Both the nanofiber suspensions prepared in 8 and 16 % (w/w) NaOH were formed into hydrogels by neutralization because of surface entanglement and/or interdigitation between the nanofibers. When the dried pulp was fibrillated in 16 % (w/w) NaOH, the sample after neutralization had a uniquely integrated continuous network. These results can be applied to the preparation of high-strength films and fibers with cellulose I crystal forms without prior dissolution of pulps.  相似文献   

4.
Carbonaceous nanofibers (CsNFs) were produced by pyrolysis of cellulose nanofibers synthesised from wood pulp using a top-down approach. The effects of heat treatment conditions on the thermal, morphological, crystal and chemical properties of the CsNFs were investigated using TGA, SEM, XRD and FT-IR, respectively. The results showed that heat treatment conditions around the thermal decomposition temperature of cellulose greatly influence the morphology of resulting materials. Slow heating rates (1 °C/min) between 240 and 400 °C as well as prolonged isothermal heat treatment (17 h) at 240 °C were necessary to avoid destruction of the original fibrous morphology in carbonized nanofibers. On the other hand, such heat treatment had little effect on micron sized fibers. The optimized heat treatment conditions led to the release of oxygen and hydrogen from cellulose before thermal breakdown of glycosidic rings, which in turn prevented depolymerization and tar formation, resulting in the preservation of the fibrous morphology.  相似文献   

5.
Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.  相似文献   

6.
Recent findings indicate there is only a small window of sulfuric acid concentration (60–65 %) and temperature (45–65 °C) which allows efficient extraction of cellulose nanocrystals in significant quantities from bleached chemical pulp. In the present report, we develop a systematic explanation for how hydrolysis temperature, at a specific acid concentration, governs CNC surface properties. We demonstrate that CNCs with different suspension viscosity, stability in electrolyte-containing solutions, and optical properties can be produced, based on the presence or not of a precipitated oligosaccharide layer (OSL) on the surface of the nanocrystals. At hydrolysis temperatures below 65 °C, the degree of polymerization (DP) distribution of cellulose chains in CNC samples exhibits a bimodal distribution, indicating an accumulation of oligosaccharides on the CNC surface which increases as the hydrolysis temperature is decreased. At low hydrolysis temperature (45 °C), the oligosaccharides dissolved in the strong acid phase have a DP between 7 and 20 and precipitate onto CNCs when the reaction is quenched by diluting with water. As the temperature of hydrolysis is increased (50–60 °C), the dissolved oligosaccharides are hydrolyzed faster and their DP decreases such that they remain soluble after quenching. At 65 °C, no precipitated oligosaccharides can be detected on the CNC surface. Based on these results, we propose possible explanations to account for the effects of the OSL on the CNC suspension viscosity and stability and on optical properties of CNC films.  相似文献   

7.
In this work, we prepared phosphorylated pulp with a phosphorous content of 1.23 mmol/g by adding an aqueous solution of NH4H2PO4 and urea to softwood pulp sheets followed by drying and curing with hot air and obtained cellulose nanofibers (CNFs) with a uniform width of 3–4 nm in approximately 100% gravimetric yield by high-pressure homogenization of the phosphorylated pulp slurry. After phosphorylation, no significant decrease in the pulp recovery ratio was observed, and the viscosity-average degree of polymerization of phosphorylated pulp was almost equal to that of the original pulp. In addition, the crystal structure and crystallinity index were almost unchanged during phosphorylation. The obtained phosphorylated CNF dispersion was highly transparent, and the maximum total light transmittance was nearly 100% when the CNF content was 0.2 wt%. The maximum viscosity of the CNF dispersions was nearly 10–100 times greater than that of conventional thickeners. Furthermore, we found that not only insufficient but also excessive phosphorylation negatively affected the gravimetric yield, transparency and viscosity.  相似文献   

8.
Use of switchable ionic liquid (SIL) pulp offers an efficient and greener technology to produce nanofibers via ultrafine grinding. In this study, we demonstrate that SIL pulp opens up a mechanically efficient route to the nanofibrillation of wood pulp, thus providing both a low cost and chemically benign route to the production of cellulose nanofibers. The degree of fibrillation during the process was evaluated by viscosity and optical microscopy of SIL treated, bleached SIL treated and a reference pulp. Furthermore, films were prepared from the fibrillated material for characterization and tensile testing. It was observed that substantially improved mechanical properties were attained as a result of the grinding process, thus signifying nanofibrillation. Both SIL treated and bleached SIL treated pulps were fibrillated into nanofibers with fiber diameters below 15 nm thus forming networks of hydrophilic nature with an intact crystalline structure. Notably, it was found that the SIL pulp could be fibrillated more efficiently than traditional pulp since nanofibers could be produced with more than 30% less energy when compared to the reference pulp. Additionally, bleaching reduced the energy demand by further 16%. The study demonstrated that this switchable ionic liquid treatment has considerable potential in the commercial production of nanofibers due to the increased efficiency in fibrillation.  相似文献   

9.
通过电纺非溶剂调控的纤维素溶液, 制备出纤维素电纺纤维. 在N,N-二甲基乙酰胺(DMAc)-氯化锂(LiCl)溶解纤维素体系中, 以DMAc和N,N-二甲基甲酰胺(DMF)作为非溶剂, 添加到高浓度的纤维素溶液中制备电纺溶液. 考察添加非溶剂对纤维素溶液性质和电纺纤维形貌的影响. 结果表明, 添加非溶剂有助于提升纤维素溶液的可纺浓度, 获得分散性较好的电纺纤维, 其中DMF效果最好. 添加非溶剂降低了纤维素溶液的黏度, 使纤维素溶液可纺浓度提高; 添加非溶剂改变了电纺溶液的稳定性, 获得了分散良好的纳米纤维, 从而有助于纤维素射流在电纺过程中快速固化成型.  相似文献   

10.
In this study, polyvinyl alcohol (PVA) nanofibers with ethyl vanillin as an active compound were prepared using electrospinning technique. The final products of electrospinning process were in the form of nanofibers films. PVA/ethyl vanillin nanofibers, having fibers diameters in the range 100–1700 nm, were successfully electrospun from ethanol/water mixture of PVA and ethyl vanillin. The effects of immobilization process on ethyl vanillin thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC showed significant influence of immobilization process on thermal properties of ethyl vanillin. It was noticed that melting point of immobilized ethyl vanillin was lower (~55 °C) compared to free flavor (~77 °C). Our results showed that films based on PVA/ethyl vanillin nanofibers are mechanically stable.  相似文献   

11.
Poly (N-isopropylacrylamide)/poly (2-acrylamido-2-methylpropanesulfonic acid) (PNIPAAm/PAMPS) nanofibers was prepared using the electrospinning technique. The electrospinning process parameters such as solution concentration, voltage, receiver distance and flow rate were determined by the orthogonal experiments. The appropriate electrospinning parameters were 7.0% of solution concentration, 10.0 kV of voltage, 20 cm of distance and 3.1 μL·min?1 of flow rate, respectively. The major factor affecting the nanofibers diameter was the solution concentration and the diameter increased with the solution concentration. The Fourier-transform infrared spectroscopy (FTIR) was conducted to characterize the structure of the components for electrospinning. Scanning electron microscopy (SEM) was taken to observe the morphology, and the contact angle (CA) measuring was carried out to determine the wettability of the nanofibers with temperatures. The results of SEM observation showed that the surfaces of nanofibers were smooth with uniform fibrous diameters and without the formation of beads. The CA detections showed that the electrospun PNIPAAm/PAMPS nanofibers exhibited thermo-sensitivity of hydrophilicity at 20°C and hydrophobicity at 40°C.  相似文献   

12.
We describe the fabrication and characterization of tungsten oxide nanofibers using the electrospinning technique and sol-gel chemistry. Tungsten isopropoxide sol-gel precursor was incorporated into poly(vinyl acetate)(PVAc)/DMF solutions and electrospun to form composite nanofibers. The as-spun composite nanofibers were subsequently calcinated to obtain pure tungsten oxide nanofibers with controllable diameters of around 100 nm. SEM and TEM were utilized to investigate the structure and morphology of tungsten oxide nanofibers before and after calcination. The relationship between solution concentration and ceramic nanofiber morphology has been studied. A synchrotron-based in situ XRD method was employed to study the dynamic structure evolution of the tungsten oxide nanofibers during the calcination process. It has been shown that the as-prepared tungsten oxide ceramic nanofibers have a quick response to ammonia with various concentrations, suggesting potential applications of the electrospun tungsten oxide nanofibers as a sensor material for gas detection.  相似文献   

13.
Viscosities of microcrystalline cellulose + 1-butyl-3-methylimidazolium acetate ([bmIm][Ac]) solutions (0.6–1.2 wt%) in contact with CO2 were measured at 312 K with a resonant vibrational viscometer. At 4 MPa and 312 K, the CO2 could reduce the viscosity of 1.2 wt% cellulose + [bmIm][Ac] solution by about 80 %, whereas N2 at the same conditions gave less than a 10 % reduction in viscosity. The viscosity-averaged degree of polymerization and IR spectrum showed that cellulose did not decompose during experiments and that [bmIm][Ac] acted as a non-derivatizing solvent during the dissolution and viscosity reduction process. Further, although CO2 does react with [bmIm][Ac] to form 1-butyl-3-methylimidazolium-2-carboxylate, the reaction seems to be reversible and it does not affect the cellulose. Thus, [bmIm][Ac] with CO2 provides an effective solvent for cellulose and the solvent system can probably be recycled or reused.  相似文献   

14.
In this research work, crystalline structure, phase transformation, morphology and mean size of titanium dioxide (TiO2) electrospun nanofibers have been tailored by loading with 2.5, 5.0 and 7.5 wt.% of silver (Ag) which was followed by calcination. The as prepared non woven mats of nanofibers were calcinated at 500 °C to allow the reaction moieties to leave the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading and calcination on the transformation of microstructure of these electrospun nanofibers have been characterized by XRD, FESEM, FT-IR and Raman spectroscopy (RS). The mean diameter of Ag loaded nanofibers has been found to decrease upon calcination which was estimated to 70 nm whereas length was in the order of mm range. XRD and RS results have strongly supported the transformation of crystalline phase from rutile (A) to anatase (R) above 2.5 wt.% of Ag loading in TiO2 after calcination. The roughness on the outer surfaces of these nanofibers has been observed to increase with the Ag loading consequent to calcination, which has been attributed to the formation Ag nanoparticles that were found adsorbed at the surfaces. An interesting finding of this study is the existence of 1D nanofibers’ structure even at higher (7.5 wt.%) Ag loading, as observed by the SEM micrographs.  相似文献   

15.
The electrospinnability of polyethylene oxide (PEO) was manipulated by atmospheric plasma treatment of pre‐electrospinning solutions. Conductivity, viscosity, and surface tension of PEO solutions increased after plasma treatment, and the plasma effect remained longer when the solution concentrate increased. Both untreated and treated solutions were then electrospun, and the morphology of the resultant nanofibers was observed by SEM. Atmospheric plasma treatment improved the electrospinnability of PEO solutions and led to less beads and finer diameter distribution in the resultant nanofibers. Additionally, plasma treatment of the pre‐electrospinning solutions affected the crystal structure of resultant nanofibers. These results suggest that atmospheric plasma treatment is a feasible approach to improve the electrospinnability of polymer solutions and can used to control the structure of electrospun nanofibers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
Flexibility and modulus of elasticity data for two types of wet cellulose fibres using a direct force–displacement method by means of AFM are reported for never dried wet fibres immersed in water. The flexibilities for the bleached softwood kraft pulp (BSW) fibres are in the range of 4–38 × 1012 N?1 m?2 while the flexibilities for the thermomechanical pulp (TMP) fibres are about one order of magnitude lower. For BSW the modulus of elasticity ranges from 1 to 12 MPa and for TMP between 15–190 MPa. These data are lower than most other available pulp fibre data and comparable to a soft rubber band. Reasons for the difference can be that our measurements with a direct method were performed using never dried fibres immersed in water while other groups have employed indirect methods using pulp with different treatments.  相似文献   

17.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

18.
Nanofibers of naturally modified polymer such as carboxymethyl cellulose (CMC) blended with poly(vinyl alcohol) (PVA) at different ratios was obtained by electrospinning technique. The blended solutions of CMC and PVA loaded with and without diclofenac sodium (DS) were electrospun using environmentally benign electrospinning technique in the absence of organic solvents. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) were used to investigate the surface morphology functional groups, as well as the thermal stability of DS loaded CMC/PVA nanofibers mat. The mechanical properties of the as prepared electrospun nanofibers was also evaluated. The entrapment efficiency and the in vitro release of DS loaded CMC/PVA nanofibers were characterized using UV-Vis spectroscopy. The obtained results displayed that the blended nanofibers have shown a smooth morphology, no beads formation when the concentration of CMC was equal or below 5% and beads formation above 5%. FTIR data demonstrated that there were good interactions between CMC and PVA possibly via the formation of hydrogen bonds. The electrospun blended CMC/PVA nanofibers exhibit good mechanical properties. From the in vitro release data, it was found that with the presence of CMC, the release of DS from the nanofibers mats became sustained controlled. Due to the biocompatibility and low cost of the two blended polymers (CMC and PVA), the blended nanofibers system can be considered as one of the promising materials for the preparation of excellent drug carrier.  相似文献   

19.
Aqueous swelling pretreatment of cellulose was found highly effective for reactive ball milling to prepare surface-esterified cellulose nanofibers. Compared with starting from dry cellulose, water- or 2 % NaOH-pre-swollen materials were esterified and dispersed in significantly shorter milling time. Especially commercial kraft pulp was difficult to disperse even with water pretreatment, but 2 % NaOH treatment gave full surface esterification with a bulk degree of substitution of 0.69 by 12-h ball milling, presumably because of removal of non-cellulosic components.  相似文献   

20.
Potential sampling errors (regional variation) on an electrospun mat were explored and person-to-person (analyst affect) variation in image analysis of the fiber diameter were investigated via detailed statistical analyses. Scanning electron microscope (SEM) samples were prepared from the vertical midline of a single non-woven mat of electrospun polyethylene oxide. Thirteen analysts with identical training and instructions measured the diameters of the nanofibers from the six SEM images and statistical analyses were performed on the resulting data. The fiber diameters were significantly different in the lower region than the upper and center regions. Furthermore, the fiber diameters in the lower region—from micrographs taken only millimeters apart—were statistically different demonstrating a statistically significant regional variation in the sample. Furthermore, statistically significant variation between the analysts also was observed, with the average fiber diameter ranging from 166 nm to 276 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号