首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
超微电极具有常规电极无法比拟的优良的电化学特性.超微电极包括单超微电极和超微电极阵列,单超微电极响应电流较小,一般仪器难以检测;而超微电极阵列除具有单超微电极的特点外,还能增加测量时的响应电流,有利于仪器检测.其中的叉指型超微带电极阵列(IDA)具有产生-收集效应,可提高检测的灵敏度,实现低浓度测量[1~4].将微电子技术和微细加工技术应用于化学和生物传感技术已引起关注,利用微细加工技术可以实现传感器的微型化、集成化和智能化;减少测量使用的样品量;使传感器的敏感元件具有确定的形状和尺寸,提高测量结果的一致性.本文用多…  相似文献   

2.
By incorporation of synthesized magnetite nanoparticles (Fe3O4 NPs) coated with a new Schiff base into carbon paste electrode, a novel modified electrode was constructed for simultaneous determination of ultra trace amounts of Cd(II), Cu(II) and Hg(II). The complexation reaction of Schiff base with metal ions was studied spectrophotometrically. Under optimal conditions a detection limit of 0.20, 0.90 and 1.00 ng mL?1 for Cd(II), Cu(II) and Hg(II), respectively, was obtained. We take the advantages of the proposed method for simple, rapid, sensitive and selective simultaneous determination of trace amounts of hazardous Cd(II), Cu(II) and Hg(II) in water and foodstuff samples.  相似文献   

3.
《Electroanalysis》2002,14(23):1654-1660
It was found that melatonin could be incorporated and accumulated on the surface of the glassy carbon electrode which was activated electrochemically by pretreatment in sodium hydroxide solution by means of cycling the potential well into the positive limit of the solvent. In Britton‐Robinson buffer solution (pH 6.7), melatonin gave a sensitive oxidation wave at a potential of +0.65 V (vs.Ag/AgCl) by using Osteryoung square‐wave stripping voltammetry (OSWSV). The oxidation process has been shown to be irreversible and adsorption‐controlled at this electrode by means of cyclic voltammetry and linear sweep voltammetry. A chronocoulometric characterization of the adsorption characteristics of melatonin at this electrode is also presented. The factors affecting the peak current were optimized, and the dependence of peak currents on the concentration of melatonin was found to be linear in the range 8.0×10?7?1.0×10?5 mol L?1. A detection limit of 5.0×10?8 mol L?1 was obtained (signal‐to‐noise ratio of 3). This method was applied to the assay of melatonin in tablets and capsules with good recoveries (98–100%).  相似文献   

4.
Pencil graphite electrode (PGE) modified with MWCNT and Bi3+ (MWCNT/Bi/PGE) was utilized in simultaneous analysis of Pb2+, Cd2+, and Zn2+. Surface and electrochemical characteristics of MWCNT/Bi/PGE were investigated via SEM, cyclic voltammetry, electrochemical impedance spectroscopy, and FTIR measurements. Even though modification with MWCNT did not improve the electroactive surface area, it significantly decreased the charge transfer resistance. Furthermore, modification with Bi3+ significantly increased the sensitivity. Finally, MWCNT/Bi/PGE exhibited the highest sensitivity and reproducibility compared to PGE and PGE modified with only MWCNT. MWCNT/Bi/PGE provided LOD values of 0.27, 0.43, and 1.63 μg L−1, and linear ranges of 1–80, 5–80, and 10–80 μg L−1 for Pb2+, Cd2+, and Zn2+, respectively. Proposed modification method offers effective electroanalytical performance with low time consumption and cost for the analyst.  相似文献   

5.
ZnO nanoparticles (ZnO-NP) were prepared by a facile precipitation technique using di-isopropyl amine as precipitating agent. The morpho-structure and porosity of the as-prepared nano-powder were investigated by FT-IR analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET analysis. By drop-casting, a composite film was deposited to obtain ZnO-NP-Nafion/GCE modified electrode. The modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry (SWASV) for the detection of Pb2+, Cd2+, Cu2+, and Fe3+, and it was successfully applied for the detection of Pb2+ and Cu2+ in real water samples.  相似文献   

6.
This paper presents a microsensor chip integrated with a gold nanoparticles‐modified ultramicroelectrode array (UMEA) as the working electrode for the detection of copper ions in water. The microsensor chip was fabricated with Micro‐Electromechanical System technique. Gold nanoparticles were electrodeposited onto the surface of UMEA at a constant potential of ?0.3 V. The ratio d/Rb of interelectrode spacing (d) over the individual electrode’s radius (Rb) was investigated to improve the electrochemical performance. The UMEA with a d/Rb of 20 showed the best hemispherical diffusion mode, resulted in fast response time and high current response. The gold nanoparticles increased the active surface area of UMEA by not changing the geometries of UMEA, and the current response was increased further. Incorporating the optimized characteristic of UMEA and gold nanoparticles, the microsensor showed a good linear range from 0.5 to 200 µg L?1 of copper ions in the acetate buffer solutions with the method of square wave stripping voltammetry. Compared with the gold nanoparticles‐modified disk electrode, the gold nanoparticles‐modified UMEA showed higher sensitivity (0.024 µA mm?2 µg?1 L) and lower limit of detection (0.2 µg L?1). Water samples from river water and tap water were analyzed by the microsensor chip with recovery ranging from 100.7 % to 107.8 %.  相似文献   

7.
《Electroanalysis》2017,29(2):497-505
An electrochemical sensor for the simultaneous and sensitive detection of Cd(II) and Pb(II) is proposed on the basis of square‐wave anodic stripping voltammetry (SWASV) experiments using a novel bismuth film/ordered mesoporous carbon‐molecular wire modified graphite carbon paste electrode (Bi/OMC‐MW/GCPE). Ordered mesoporous carbon (OMC) and molecular wire (MW) (diphenylacetylene) were used as the modifier and binder, respectively. The Bi/OMC‐MW/GCPE was prepared with the addition of graphite powder, OMC and DPA at the ratio of 2 : 1 : 1. The electrochemical properties and morphology of the electrode were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), SWASV and scanning electron microscopy (SEM). The parameters affecting the stripping current response were investigated and optimized. The experimental results show that the prepared electrode exhibited excellent electrochemical performance, good electrical conductivity and a high stripping voltammetric response. Under optimized conditions, a linear range was achieved over a concentration range from 1.0 to 70.0 μg/L for both Cd(II) and Pb(II) metal ions, with detection limits of 0.07 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N=3) with the deposition time 150 s. Moreover, the sensor exhibited improved sensitivity and reproducibility compared to traditional CPEs. The fabricated electrode was then successfully used to satisfactorily detect Cd(II) and Pb(II) in real soil samples.  相似文献   

8.
Determinations of Cu, Fe, Mn and Zn were performed in an oxisol soil treated with effluent originated from a biodigester septic cesspool. The extracts were obtained from a DTPA/TEA (pH 7.3) solution and analysed by electroanalytical methodologies using square wave anodic stripping voltammetry (SWASV) for the analysis of Cu, Mn and Zn and square wave voltammetry (SWV) for Fe analysis, both of them with a thin mercury film microelectrode (ME-Hg). DTPA (diethylenetriaminepentaacetic acid) complexes with Cu, Mn and Fe show electroactivity in the potentials range close to the ones for the free ions in solution, but the Zn complex did not show any electroactivity at the potential range analysed. SWASV/ME-Hg and SWV/ME-Hg results were in good agreement (r2 = 0.996) with the flame atomic absorption spectroscopy (FAAS) analyses, demonstrating that electroanalytical methodologies can be used for micronutrient determinations in soil extracts without serious interferences of the matrix components. Some characteristics of the complex formed between DTPA-metals are explored by EPR experiments.  相似文献   

9.
Characterisation of Screen-Printed Electrodes for Detection of Heavy Metals   总被引:1,自引:0,他引:1  
 The characterisation of disposable screen-printed electrodes for stripping analysis is described. The graphite surface of the working electrode is used as substrate for plating a thin mercury film, which allows the electrochemical preconcentration of heavy metals. Optimisation procedures and experimental results are presented. Detection limits around the ppb level were obtained for different metals [Pb(II), Cd(II), Cu(II)]. Received June 6, 1998. Revision November 10, 1988.  相似文献   

10.
《Analytical letters》2012,45(6):1197-1208
Abstract

Dopamine can be determined by voltammetric methods using a mercury electrode, previously oxidized at +0.30 V. The oxidation product formed is stabilized in the presence of citrate and undergoes reduction at ?0.31 V. This work describes the electrochemical behavior of dopamine at a mercury electrode in the presence of citrate and its application in the development of a square‐wave voltammetric method for the dopamine determination in pharmaceutical formulations. The method was in‐house validated for determination of dopamine in injectable formulations. The detectability of the method was 0.02 µg ml?1.  相似文献   

11.
本文建立了一种饮用水源水中痕量溶解态铜离子(Cu2+)的定性和定量电化学检测方法. 该方法首先通过电化学循环伏安法于玻碳电极表面制备粒径约为70 nm的金纳米粒子(Au NPs),然后采用方波阳极溶出伏安法进行待测水样中Cu2+的定性定量分析. 研究结果表明,对于标准溶液,方法的检出限为1.3μg·L-1,线性范围在2 ~ 50μg·L-1之间,常见重金属离子对其定性定量分析几无影响. 在此基础上,将该方法应用于福建省重要的饮用水源水--闽江中游水样中Cu2+的含量分析,所得测试结果与国家标准方法(石墨炉原子吸收光谱法)无显著性差异,标准偏差在20%以内. 本方法具有电极制备简单、测定成本低以及分析快速等优点,进一步优化电极制备方法以提高方法的重现性和定量准确度,将可望用于现场测定各种饮用水源水中的痕量溶解态Cu2+.  相似文献   

12.
《Analytical letters》2012,45(7):1231-1246
ABSTRACT

Strategies to modify screen-printed electrodes (SPE) for lead determination are reported. Dithizone was mixed with graphite ink to obtain a modified screen-printed strip to detect ppb levels of lead(II) (detection limit 12 μg/l) using square wave anodic stripping voltammetry (SWASV). In addition, screen-printed electrodes were also modified by casting a few μl of a Nafion® solution onto the working electrode surface. In this case, ppb levels of lead were detected (detection limit 15 μg/1), using potentiometric stripping analysis (PSA). The addition of an ionophore to Nafion® polymer was also investigated, but this did not yield a significant improvement.  相似文献   

13.
结合微型电化学仪器,研究了一种快速、便携、灵敏的Cr(VI)电化学传感分析平台,用于污水中Cr(VI)的检测。采用三电极体系,差分脉冲阴极溶出伏安法(DPCSV),记录伏安曲线中Cr(VI)的还原峰。Cr(VI)的溶出峰电流与其浓度在2~500 μmol L-1范围内有良好的线性关系,测得Cr(VI)的检测限为0.55 μmol L-1 (28.60 g L-1),达到了国际卫生组织(WHO)规定的饮用水中Cr(VI)的最高含量50 g L-1。测得镀铬厂废水中Cr(VI)含量为2.03 mol L-1,与国标法中光谱学分析法的结果基本一致。该法重现性好、灵敏度高,使其应用在现场实时监测环境中的Cr(VI)具有很大的潜力。  相似文献   

14.
本文研究了金纳米颗粒@碳微球(Au@CMSs)的制备及水环境中汞离子在该材料上的电化学行为. 实验结果表明,在0.1mol•L-1 pH = 5.0的NaAc-HAc缓冲溶液中,采用方波伏安法测定汞离子,其浓度与氧化峰电流强度线性良好,相关系数为0.997,检出限为3.69 × 10-8 mol•L-1(3σ方法).  相似文献   

15.
Heavy metals in drinking water have become a severe threat to human health. Detection of heavy metals has been achieved by electrochemical sensors that are modified with complex nanocomposites; however, reproducibility of these sensors is still a big challenge when applied in commercial settings. Here, a simple, very robust, and sensitive electrochemical sensor based on a screen-printed carbon electrode modified with butterfly-shaped silver nanostructure (AgNS/SPCE) has been developed for the concurrent determination of cadmium (II), lead (II), copper (II), and mercury (II) in water samples. The electrochemical behavior of the modified electrodes was investigated using cyclic voltammetry and differential pulse anodic stripping voltammetry. The AgNS/SPCE showed distinct peak potentials and a significant increase in the peak currents for all heavy metals, attributed to the high electrical conductivity and electrocatalytic activity of the synthesized butterfly-shaped AgNS. Moreover, the excellent stability and sensitivity towards simultaneous quantification of heavy metals have been obtained with detection limits of 0.4 ppb, 2.5 ppb, 7.3 ppb, and 0.7 ppb for Cd (II), Pb (II), Cu (II), and Hg (II), respectively. Besides, the constructed sensor was successfully applied to simultaneously quantify target heavy metals in spiked water samples. Owing to excellent sensitivity, high robustness, affordability, and fast response, the presented electrochemical sensor could be incorporated into a portable and miniaturized potentiostat device, making it a promising method for on-site water analysis.  相似文献   

16.
制备了蒙脱土修饰电极,并采用循环伏安法研究了安乃近在该电极上的电化学行为。结果表明,该电极过程是一受扩散控制的不可逆过程。用方波溶出伏安法优化了实验参数,测定了浓度与峰电流Ipa的线性关系,发现Ipa与安乃近浓度在2.0×10-6~8.0×10-5mol.L-1之间呈良好的线性关系,其线性回归方程为:Ipa(μA)=-0.07784-15443.54c(μmol.L-1),r=-0.9993,检出限可达1.12×10-6mol.L-1,回收率为94.0%~108.25%。该方法可用于药物中安乃近含量的测定。  相似文献   

17.
A novel sulfhydryl-modified covalent organic framework was designed for the selective determination of lead(II) using square wave anodic stripping voltammetry. The introduction of sulfhydryl groups enhanced the selectivity and sensitivity of the covalent organic framework for analytes. The sulfhydryl-modified covalent organic framework was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Under the optimized conditions, a sulfhydryl-modified covalent organic framework/gold electrode was successfully used for the determination of lead(II) in water samples. The newly developed square wave anodic stripping voltammetry method exhibited wide linearity (0.05 to 20?ng mL?1, r?=?0.991), a low limit of detection (0.015?ng mL?1) and good precision, with a relative standard deviation values <5.1%. The limit of detection was lower than 10?ng mL?1, the level of lead(II) in drinking water permitted by the World Health Organization. The recoveries of three spiked samples ranged from 90.0% to 104.0%, with relative standard deviations <4.9%. Satisfactory reproducibility and good repeatability demonstrated that the newly developed method is very suitable for the detection of lead(II) in real water samples, with significant advantages over existing methods.  相似文献   

18.
 The electrochemical behaviour of monomethyltin, dimethyltin and trimethyltin compounds in 20% (V/V) methanol/water solution, 0.05 mol/L in tetraethylammonium perchlorate at pH 2.5, has been investigated by differential pulse polarography and differential pulse anodic stripping voltammetry. In differential pulse polarography, dimethyltin and trimethyltin gave one reversible wave with peak potentials at −0.70 V and −1.07 V, respectively. Detection limits were 6.6 × 10−7 mol/L for dimethyltin and 4.1 ×  10−6 mol/L for trimethyltin. The electrochemistry of monomethyltin was found to be more complex. By differential pulse anodic stripping voltammetry, monomethyltin, dimethyltin and trimethyltin produced distinct stripping peaks (−0.39 V, −0.75 V and −1.14 V, respectively), which allow to determine these compounds at trace levels. Using this new method, detection limits were: 1.2 × 10−7 mol/L for monomethyltin, 1.7 × 10−7 mol/L for dimethyltin and 1.4 × 10−6 mol/ L for trimethyltin. For monomethyltin, a second peak (Ep = −0.60 V), less sensitive (detection limit of 2.5 × 10−6 mol/L), was also observed at concentrations above 4.2 × 10−7 mol/L. Recoveries of methyltin compounds added separately to tap water samples at the 0.42–16.9 μmol per litre level ranged from 84.5 to 99.8% depending upon the methyltin species. Received January 3, 2001. Revision August 10, 2001.  相似文献   

19.
《Electroanalysis》2018,30(3):459-465
New insights into the design of highly sensitive, carbon‐based electrochemical sensors are presented in this work. This was achieved by exploring the interesting properties of conductive (Mg/Al) layered double hydroxide‐dodecyl sulphate/polypyrrole nanocomposites which were synthesized by in‐situ polymerization of pyrrole during the assembly of (Mg/Al) layered double hydroxide, and by employing the anionic surfactant dodecyl sulphate as a modifier. Changes in morphology and surface area of the nanocomposites occured as a result of change in pyrrole percentage. Under optimal conditions, the modified carbon paste electrode successfully achieved detection limits of 0.057 and 0.134 nmol L−1 of Terazosin hydrochloride in pharmaceutical formulation and spiked human serum fluid, respectively. Moreover, the sensors are highly stable, reusable and free of interference by other commonly present excipients in drug formulations.  相似文献   

20.
In this work, simultaneous determination of Cu(II), Pb(II) and Zn(II) ions at low concentration levels (ppb) by square wave anodic stripping voltammetry on a Bi(III) film electrode plated in situ at a glassy carbon electrode (GCE) is described. A chemometric approach was used to overcome the overlapping peaks of Cu(II) and Bi(III), the competition of the electrodeposited Cu and Bi for the surface of the GCE and the formation of Cu‐Zn intermetallic compounds. The construction of the multivariate calibration models, based on partial least squares regression, allowed the simultaneous determination of Cu (in the concentration range 8.0 to 20.1 ppb), Pb (2.0 to 30.0 ppb) and Zn (29.7 to 90.4 ppb) with most of the prediction errors obtained in the external validation set for the three models lower than 16, 11 and 26 %, respectively. Finally, this method was used for the determination of these trace metal ions in surface river water samples with satisfactory results [errors below 10, 5 and 32 % for Cu(II), Pb(II) and Zn(II), respectively].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号