首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The focusing Zakharov–Shabat scattering problem on the infinite line with non-zero boundary conditions for the potential is studied, and sufficient conditions on the potential are identified to ensure that the problem admits only purely imaginary discrete eigenvalues. The results, which generalize previous work by Klaus and Shaw, are applicable to the study of solutions of the focusing nonlinear Schrödinger equation with non-zero background.  相似文献   

2.
3.
We consider the Wheeler–DeWitt equation as a device for finding eigenvalues of a Sturm–Liouville problem. In particular, we will focus our attention on the electric (magnetic) Maxwell charge. In this context, we interpret the Maxwell charge as an eigenvalue of the Wheeler–De Witt equation generated by the gravitational field fluctuations. A variational approach with Gaussian trial wave functionals is used as a method to study the existence of such an eigenvalue. We restrict the analysis to the graviton sector of the perturbation. We approximate the equation to one loop in a Schwarzschild background and a zeta function regularization is involved to handle with divergences. The regularization is closely related to the subtraction procedure appearing in the computation of Casimir energy in a curved background. A renormalization procedure is introduced to remove the infinities together with a renormalization group equation.  相似文献   

4.
We consider the problem of the relaxation of an arbitrary initial distribution function of a gas of long-wave acoustic phonons scattered by isotopic impurities embedded in a crystalline medium with cubic symmetry. The spectral decomposition of the collision integral of the suitable Boltzmann-Peierls equation is obtained. The spectrum of the collision operator is purely discrete and in addition to the eigenvalue 0 consists of three other eigenvalues. Explicit analytic expressions for these eigenvalues are obtained. Within the Chapman-Enskog approximation we derive the diffusion equation for the density of phonons and obtain the explicit expression for the diffusion coefficient. The dependency of the eigenvalues of the collision operator and the diffusion coefficient on the elastic constants of the medium is studied.  相似文献   

5.
This paper is a direct continuation of [1] where we began the study of the integrable structures in Conformal Field Theory. We show here how to construct the operators ${\bf Q}_{\pm}(\lambda)$ which act in the highest weight Virasoro module and commute for different values of the parameter λ. These operators appear to be the CFT analogs of the Q - matrix of Baxter [2], in particular they satisfy Baxter's famous T- Q equation. We also show that under natural assumptions about analytic properties of the operators as the functions of λ the Baxter's relation allows one to derive the nonlinear integral equations of Destri-de Vega (DDV) [3] for the eigenvalues of the Q-operators. We then use the DDV equation to obtain the asymptotic expansions of the Q - operators at large λ; it is remarkable that unlike the expansions of the T operators of [1], the asymptotic series for Q(λ) contains the “dual” nonlocal Integrals of Motion along with the local ones. We also discuss an intriguing relation between the vacuum eigenvalues of the Q - operators and the stationary transport properties in the boundary sine-Gordon model. On this basis we propose a number of new exact results about finite voltage charge transport through the point contact in the quantum Hall system. Received: 2 December 1996 / Accepted: 11 March 1997  相似文献   

6.
The pseudo-spin model for a double layer quantum Hall system with the total landau level filling factor ν=1 is discussed. In contrast to the “traditional” model where the interlayer voltage enters as a static magnetic field along pseudo-spin hard axis, taking into account the realistic experimental situation, in our model we interpret the influence of applied voltage as a source of additional relaxation process in the double layer system. We show that the Landau-Lifshitz equation for the considered pseudo-magnetic system well describes existing experimental data and reduces to the dc driven and damped sine-Gordon equation. As a result, the mentioned model predicts novel directed intra-layer transport phenomenon in the system. In particular, unidirectional intra-layer energy transport can be realized due to the motion of topological kinks induced by applied voltage. Experimentally this should be manifested as counter-propagating intra-layer inhomogeneous charge currents proportional to the interlayer voltage and total topological charge of the pseudo-spin system.  相似文献   

7.
We have developed a new approach toward solving problems of linear radiative relaxation of LTE temperature perturbations in a plane-parallel atmosphere of finite extent. We show that the mathematical problem is one of solving an integral eigenvalue equation, for which non-trivial solutions exist only for discrete values of the radiative relaxation time. The solutions for the spatial part of the perturbation constitute a complete and orthogonal set of basis functions, making it possible to solve more general problems of temperature relaxation. In applying this method to radiative relaxation in the middle atmosphere of earth, we show how the additional influences of photochemical coupling, advection by winds, and eddy diffusion by small-scale turbulence may be easily included using matrix perturbation techniques. We have solved the homogeneous integral equation for a wide variety of vertical thicknesses in an idealized homogeneous slab medium. Adopting a number of different analytic line profiles (rectangular, Doupler, Voigt, and Lorentz) we have obtained numerical solutions using an exponential-kernel method for solving the integral equation. The discrete eigenvalue “spectrum” is presented for vertical optical depths (0–103) at line-center, and is used in solving several initial-value problems for a decaying temperature perturbation. We find that the eigenvalue spectrum is bounded from above by the lowest-order eigenvalue, and bounded from below by the familiar transparent approximation. The dependence of the lowest even eigenvalue on optical depth and the relative separation of the higher eigenvalues are found to depend sensitively on the line profile.  相似文献   

8.
We consider the evolution of an initial disturbance described by the modified Korteweg-de Vries equation with a positive coefficient of the cubic nonlinear term, so that it can support solitons. Our primary aim is to determine the circumstances which can lead to the formation of solitons and/or breathers. We use the associated scattering problem and determine the discrete spectrum, where real eigenvalues describe solitons and complex eigenvalues describe breathers. For analytical convenience we consider various piecewise-constant initial conditions. We show how complex eigenvalues may be generated by bifurcation from either the real axis, or the imaginary axis; in the former case the bifurcation occurs as the unfolding of a double real eigenvalue. A bifurcation from the real axis describes the transition of a soliton pair with opposite polarities into a breather, while the bifurcation from the imaginary axis describes the generation of a breather from the continuous spectrum. Within the class of initial conditions we consider, a disturbance of one polarity, either positive or negative, will only generate solitons, and the number of solitons depends on the total mass. On the other hand, an initial disturbance with both polarities and very small mass will favor the generation of breathers, and the number of breathers then depends on the total energy. Direct numerical simulations of the modified Korteweg-de Vries equation confirms the analytical results, and show in detail the formation of solitons, breathers, and quasistationary coupled soliton pairs. Being based on spectral theory, our analytical results apply to the entire hierarchy of evolution equations connected with the same eigenvalue problem. (c) 2000 American Institute of Physics.  相似文献   

9.
Discrete solitons of the discrete nonlinear Schrödinger (dNLS) equation are compactly supported in the anti-continuum limit of the zero coupling between lattice sites. Eigenvalues of the linearization of the dNLS equation at the discrete soliton determine its spectral stability. Small eigenvalues bifurcating from the zero eigenvalue near the anti-continuum limit were characterized earlier for this model. Here we analyze the resolvent operator and prove that it is bounded in the neighborhood of the continuous spectrum if the discrete soliton is simply connected in the anti-continuum limit. This result rules out the existence of internal modes (neutrally stable eigenvalues of the discrete spectrum) near the anti-continuum limit.  相似文献   

10.
We prove that for a Dirac operator, with no resonance at thresholds nor eigenvalue at thresholds, the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues sufficiently close to each other, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schrödinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation  相似文献   

11.
Vortex-type singular solutions with a topological charge of the elliptic sine-Gordon equation have been studied. One- and two-dimensional vortex lattices on a homogeneous and periodic background are constructed in the explicit form using the Bäcklund transformation. The interaction of vortices is investigated and finite energy configurations are found. On the basis of the obtained results new topological defects in incommensurate magnetic and crystal structures are predicted and described. The interaction of vortex magnetic structures with nonlinear spin waves is considered.  相似文献   

12.
Based on the nonlinear Schr?dinger equation(NLSE) with damping, detuning, and driving terms describing the evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform(NFT) to the study of signals during the generation of the Kerr optical frequency combs(OFCs). We find that the signals in different states, including the Turing pattern, the chaos, the single soliton state, and the multi-solitons state, can be distinguished according to different distributions of the eigenvalue spectrum. Specially, the eigenvalue spectrum of the single soliton pulse is composed of a pair of conjugate symmetric discrete eigenvalues and the quasi-continuous eigenvalue spectrum with eye-like structure.Moreover, we have successfully demonstrated that the number of discrete eigenvalue pairs in the eigenvalue spectrum corresponds to the number of solitons formed in a round-trip time inside the Kerr microresonator. This work shows that some characteristics of the time-domain signal can be well reflected in the nonlinear domain.  相似文献   

13.
In this paper we study the eigenvalues of the buckling problem on domains in a unit sphere. We obtain universal bounds on the (k + 1)th eigenvalue in terms of the first k eigenvalues independent of the domains. Partially supported by FEMAT. Partially supported by CNPq, Pronex and Proex.  相似文献   

14.
In this paper we consider solutions of a nonlinear Schrodinger equation with a parabolic and a periodic potential motivated from the dynamics of Bose-Einstein condensates. Our starting point is the corresponding linear problem which we analyze through regular perturbation and homogenization techniques. We then use Lyapunov-Schmidt theory to establish the persistence and bifurcation of the linear states in the presence of attractive and repulsive nonlinear inter-particle interactions. Stability of such solutions is also examined and a count is given of the potential real, complex and imaginary eigenvalues with negative Krein signature that such solutions may possess. The results are corroborated with numerical computations.  相似文献   

15.
We investigate the distribution of roots of polynomials of high degree with random coefficients which, among others, appear naturally in the context of quantum chaotic dynamics. It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, we study in detail the particular case of self-inversive random polynomials and show that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. For that purpose we introduce a family of random polynomials whose roots spread uniformly over phase space. While these results are consistent with random matrix theory predictions, they provide a new and different insight into the problem of quantum ergodicity Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials.  相似文献   

16.
We present the direct formulation of the two-dimensional boundary element method (BEM) for time-harmonic dynamic problems in solids of general anisotropy. We split the fundamental solution, obtained by Radon transform, into static singular and dynamics regular parts. We evaluate the boundary integrals for the static singular part analytically and those for the dynamic regular part numerically over the unit circle.We apply the developed BEM to eigenvalue analysis. We determine eigenvalues of full non-symmetric complex-valued matrices, depending non-linearly on the frequency, by first reducing them to the generalized linear eigenvalue problem and then applying the QZ algorithm. We test the performance of the QZ algorithm thoroughly in comparison with the FEM solution. The proposed BEM is not only a strong candidate to replace the FEM for industrial eigenvalue problems, but it is also applicable to a wider class of two-dimensional time-harmonic problems.  相似文献   

17.
In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler‐DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler‐DeWitt equation for the Friedmann‐Lemaître‐Robertson‐Walker metric is completely equivalent to a Sturm‐Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind . After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included.  相似文献   

18.
This paper deals with the location of the complex zeros of q-Potts partition function for a class of self-dual graphs. For this class of graphs, as the form of the eigenvalues is known, the regions of the complex plane can be focused on the sets where there is only one dominant eigenvalue in particular containing the positive half plane. Thus, in these regions, the analyticity of the free energy per site can be derived easily. Next, some examples of graphs with their Tutte polynomial having few eigenvalues are given. The case of the cycle with an edge having a high order of multiplicity is presented in detail. In particular, we show that the well known conjecture of Chen et al. is false in the finite case. Furthermore we obtain a sequence of self-dual graphs for which the unit circle does not belong to the accumulation sets of the zeros.  相似文献   

19.
We consider the problem of determining the spectrum for the linearization of an infinite-dimensional Hamiltonian system about a spatially periodic traveling wave. By using a Bloch-wave decomposition, we recast the problem as determining the point spectra for a family of operators JγLγ, where Jγ is skew-symmetric with bounded inverse and Lγ is symmetric with compact inverse. Our main result relates the number of unstable eigenvalues of the operator JγLγ to the number of negative eigenvalues of the symmetric operator Lγ. The compactness of the resolvent operators allows us to greatly simplify the proofs, as compared to those where similar results are obtained for linearizations about localized waves. The theoretical results are general, and apply to a larger class of problems than those considered herein. The theory is applied to a study of the spectra associated with periodic and quasi-periodic solutions to the nonlinear Schrödinger equation, as well as periodic solutions to the generalized Korteweg-de Vries equation with power nonlinearity.  相似文献   

20.
Correlations of the topological charge Q, the electric current J e, and the magnetic current J m in SU(2) lattice gauge theory in the maximal Abelian projection are investigated. It is found that the correlator 〈〈QJ eJm〉〉 is nonzero for a wide range of values of the bare charge. It is shown that: (i) the Abelian monopoles in the maximal Abelian projection are dyons which carry fluctuating electric charge; (ii) the sign of the electric charge e(x) coincides with that of the product of the monopole charge m(x) and the topological charge density Q(x). Pis’ma Zh. éksp. Teor. Fiz. 69, No. 3, 161–165 (10 February 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号