首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prudent analysis of the solid state 13C MAS NMR spectra of polycrystalline K2Pt(CN)4 · 3H2O (KTCP) reveals that in crystals of this compound there are two types of carbon nuclei with slightly different 13C chemical shift tensors, contrary to what is found for the solution NMR spectrum and previous static powder NMR studies on this compound and the high resolution solid state NMR studies on other similar compounds. The 13C MAS spectra measured at different rotor spinning speeds are satisfactorily simulated though the use of a newly developed computer program based on a novel density matrix formulation. The present method is eminently successful even though the spectra are rather complicated because of (1) the relatively large anisotropies of the chemical shift tensors; (2) the high-order dipolar interactions between 13C and 14N nuclei because of the strong quadrupolar coupling constants of 14N nuclei; and (3) the indirect J-coupling between the 13C and 195Pt. The principal elements as well as their orientations of the two 13C chemical shift tensors are evaluated from the spectral simulations.  相似文献   

2.
In 31P MAS NMR spectra of chlorocyclophosphazenes, characteristic splittings have been observed for PCl or PCl2 groups. At different applied magnetic fields, the fine structure and total width of the patterns change in a characteristic way, demonstrating that the splittings are due to indirect spin–spin and residual dipolar interactions with the chlorine nuclei directly bonded to phosphorus. For trans-nongeminal N3P3Cl3(NMe2)3 and N3P3Cl6 as examples, the spectra have been analyzed to obtain information on chlorine nuclear quadrupole coupling constants and 35,37Cl, 31P indirect spin–spin coupling constants. Neglect of these interactions may result in misinterpretations of the multiplicity in 31P MAS spectra of chlorophosphazenes.  相似文献   

3.
A two-dimensional correlation experiment is described, in which homonuclear dipolar couplings are used to realize through-space magnetization exchange on spin-1/2 (31P) and on quadrupolar nuclei (23Na and 11B). In the detection period, Magic Angle Spinning is applied to enhance resolution, and the dipole couplings are re-introduced in the mixing period by spinning off the Magic Angle. The dependency of the exchange rates on the mixing time and the spinning angle is investigated. The influence of strong spin-locking during mixing is discussed, and shown in the spin-1/2 case to remove the dependence on chemical shift offset effects. For quadrupolar spins, the experiment yields information on the relative tensor orientations of the coupled quadrupoles. Applications to crystalline sodium aluminum diphosphate, sodium sulphite, and potassium borate glasses are shown.  相似文献   

4.
提出利用S-RESIDOR(Symmetry-based Resonance Echo Saturation Irradiation DOuble Resonance)方法测量1H-27Al偶极偶合常数. 通过理论模拟,讨论了四极作用常数、饱和照射脉冲功率、照射时间对1H/27Al S-RESIDOR实验的影响. 发现四极作用常数对1H/27Al S-RESIDOR偶极去相曲线影响较小,中等强度的饱和照射功率即能满足实验要求. 高转速下,在氢型丝光沸石上进行了1H/27Al S-RESIDOR实验,测量得到Br-nsted酸位上的 1H与骨架上27Al的偶极偶合常数为874 Hz.  相似文献   

5.
A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.  相似文献   

6.
Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2–ZnF2–GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (νQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.  相似文献   

7.
The effect of the interaction between spin-3/2 and spin-1/2 nuclei on solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) spectra of the latter is studied in cases where deviations from first-order theory are expected. A comparison is made between the exact and first-order perturbation approaches. Both dipolar and indirect (iso- and anisotropic) coupling interactions are considered. Implications regarding 13C,35,37Cl, 31P,63,65Cu and 119Sn,35,37Cl cases are discussed. It is shown that in the latter two cases the sign of the indirect coupling constant J can be derived.  相似文献   

8.
9.
An extension of the exploitation of indirect observation of 1H nuclei through 13C resonances is presented in the case of crosslinked elastomers. It is demonstrated that, by using this method in vulcanized elastomers above Tg a direct visualization of residual dipolar interactions on different functional groups as well as their dependence on motional constraints is available. It is also shown that 2H natural abundance NMR spectra of elastomers provide similar information on motional constraints by way of residual quadrupolar interactions.  相似文献   

10.
Residual dipolar couplings between spin-1/2 and quadrupolar nuclei are often observed and exploited in the magic-angle spinning (MAS) NMR spectra of spin-1/2 nuclei. These orientation-dependent splittings contain information on the dipolar interaction, which can be translated into structural information. The same type of splittings may also be observed for pairs of quadrupolar nuclei, although information is often difficult to extract from the quadrupolar-broadened lineshapes. Here, the complete theory for describing the dipolar coupling between two quadrupolar nuclei in the frequency domain by Hamiltonian diagonalization is given. The theory is developed under MAS and double-rotation (DOR) conditions, and is valid for any spin quantum numbers, quadrupolar coupling constants, asymmetry parameters, and tensor orientations at both nuclei. All terms in the dipolar Hamiltonian become partially secular and contribute to the NMR spectrum. The theory is validated using experimental 11B and 35/37Cl NMR experiments carried out on powdered B-chlorocatecholborane, where both MAS and DOR are used to help separate effects of the quadrupolar interaction from those of the dipolar interaction. It is shown that the lineshapes are sensitive to the quadrupolar coupling constant of both nuclei and to the J coupling (including its sign). From these experiments, the dipolar coupling constant for a heteronuclear spin pair of quadrupolar nuclei may be obtained as well as the sign of the quadrupolar coupling constant of the perturbing nucleus; these are two parameters that are difficult to obtain experimentally otherwise.  相似文献   

11.
An analysis is made of the measurements of the elastic and inelastic scattering of 46 MeV protons by 3Be and 12C. The optical and collective models are used. There is considerable ambiguity in the optical parameters, and it was not found possible to obtain good fits to cross sections and polarizations simultaneously. Large quadrupole deformations were found for both 12C (β2 ≈ 0.6) and 9Be(β2 ≈ 1). The inelastic scattering from 12C agrees best with deformation of both real and imaginary parts of the optical potential, while 9Be shows a preference for real coupling. The 14.1 MeV level in 12C is interpreted as the 4+ rotational state, while the angular distribution for the 7.6 MeV 0+ level is well described by double quadrupole excitation via the lowest 2+. Interpretations are suggested for other inelastic transitions, including the excitation of spin and isospin oscillations.  相似文献   

12.
27Al MAS NMR has been used to study a sol–gel prepared alumina annealed at various temperatures. Two-field simulation of the sample heated to 1200 °C confirmed the presence of corundum, as suggested by XRD, and also the presence of nanocrystalline θ-Al2O3. 27Al MAS NMR chemical shifts, quadrupolar coupling constants and asymmetry parameters are reported for the tetrahedral and octahedral aluminium sites within θ-Al2O3.  相似文献   

13.
原子核的形状演化效应是核结构研究的重要基础问题之一。通常认为,A=160质量区的奇A核位于大形变核区域,它们的激发态能谱将呈现出典型的转动激发特征。然而,基于E-GOS曲线方法,发现随着角动量的增加,该质量区奇A核的晕带具有显著地从转动激发演化成为振动激发的形状演化现象。此外,为深入理解原子核形状演化的微观机制,采用Total-Routhian-Surface(TRS)方法针对稀土区的奇A核进行了理论计算,结果表明,165Yb和157Dy同位素在低激发态时具有稳定的长椭形变,当角动量大于0.50 MeV后,核芯的四极形变显著减小并开始产生三轴形变。The phase transition of nuclei with increasing angular momentum (or spin) and excitation energy is one of the most fundamental topics of nuclear structure research. The odd-N nuclei with A ≈160 are widely considered belonging to the well-deformed region, and their excitation spectra are energetically favored to exhibit the rotational characteristics. In this work, however, the evidence suggesting that the nuclei changes from rotation to vibration along the yrast lines as a function of spin was found. The simple method, named as E-Gamma Over Spin (E-GOS) curves, would be used to discern the evolution from rotational to vibrational structure in nuclei for various spin ranges. Meanwhile, in order to understand the band structure properties of nuclei, theoretical calculations have been performed for the yrast bands of the odd-A rare-earth nuclei within the framework of the total routhian surface (TRS) model. The TRS plots predict that the 165Yb and 157Dy isotopes have large quadrupole shapes at low spin states. At higher rotational frequency (~ >0.50 MeV), a clear reduction of the quadrupole deformation is indicated by the present results, and the isotopes become rigid in the γ deformation.  相似文献   

14.
The sodium environments in porous carbon materials prepared from NaOH activation of a char were investigated by means of multiple-field solid-state 23Na NMR measurements, carried out at magnetic fields of 4.7, 8.45 and 14.1 T, with single-pulse excitation and magic angle spinning (MAS). The recorded spectra showed a relatively featureless resonance with linewidth and peak shift strongly dependent on the magnetic field strength and on the hydration level of the samples. The existence of second-order quadrupolar effects was inferred, although the structural disorder and the mobile character associated with the Na environment precluded the direct observation of typical quadrupolar features in the MAS NMR spectra. The analysis of the spectra collected at multiple magnetic fields yielded the values of −2.8 ppm for the isotropic chemical shift and 1.8 MHz for the quadrupole coupling constant, which were interpreted as due to Na+ ions bonded to oxygenated groups at the edges of the graphene planes within the carbon pore network.  相似文献   

15.
59Co and 23Na NMR has been applied to the layered cobalt oxides NaCoO2 and HCoO2 at three different magnetic field strengths (4.7, 7.1 and 11.7 T). The 59Co and 23Na quadrupole and anisotropic shift tensors have been determined by iterative fitting of the NMR line shapes at the three magnetic field strengths. Due to the large 59Co quadrupole interaction in NaCoO2, a frequency-swept irradiation procedure was used to alleviate the limited bandwidth of the excitation. While the 59Co and 23Na shift and quadrupole coupling tensors in NaCoO2 are found to be coincident and axially symmetric in agreement with the crystal symmetry requirements, the fits of the 59Co NMR spectra clearly show the presence of structural disorder in HCoO2. The 23Na chemical shift anisotropy can be reproduced by shift tensor calculations using a point dipole model and considering that the magnetic susceptibility in NaCoO2 is due to Van Vleck paramagnetism for Co3+. Electric field gradient calculations using either the empirical point charge model or the ab initio full potential-linearized augmented plane wave method are compared with the experimental NMR data.  相似文献   

16.
We have studied the microscopic properties of the hexagonal ZrNiAl, a model compound for a wide family of intermetallic compounds crystallizing in this type of structure, by using 27Al NMR spectroscopy. We have investigated the lineshape of static and MAS NMR spectra as a function of magnetic field strength (4.7–9.4 T) and temperature (5–300 K). Our data indicate that the 27Al NMR spectra result from a combined effect of quadrupole and anisotropic shift interactions. The 27Al nuclei are in an environment characterized by the quadrupole coupling constant e2qQ/h of 3.3 MHz, asymmetry parameter ηQ of 0.42, isotropic shift δiso of 393 ppm, shift anisotropy δanis = δzz − (δxx + δyy)/2 of 150 ppm, and asymmetry factor ηS of 0.5. They are found to be temperature independent. The spin–lattice relaxation rate measured at 7.05 T is proportional to the temperature with T1T = 135 s K. The mechanisms responsible for observed values of δiso, δanis, T1T, and the enhanced Korringa constant are discussed.  相似文献   

17.
Phase incremented and continuous irradiation multiple spin correlation methods are applied to spin [Formula: see text] nuclei with small quadrupole couplings such as (7)Li in LiCl and are shown to successfully produce a coherently coupled dipolar spin network. Application to the analogous Na salt shows successful spin correlation evolving at a slower rate due to the weaker homonuclear dipolar coupling strength between Na nuclei. The results are analysed using a statistical approach. Spin counting is non-trivial as not only multiple quantum coherences between spins are generated but also within the quadrupolar spin levels. Na(2)C(2)O(4) is investigated as a material with non-negligible quadrupole coupling and it is in this limit that the spin correlation techniques are found to break down.  相似文献   

18.
Following the successful identification of mixed-symmetric one- and two-phonon states in the N=52 nuclei 94Mo and 96Ru, we have performed a photon scattering experiment on the N=52 isotone 92Zr. Experimental data and shell model calculations show that both, single particle and collective degrees of freedom are present in the low-lying levels of 92Zr. The second excited quadrupole state shows the signatures of the one-phonon mixed-symmetric 2+ state, while calculations and data indicate an almost pure neutron configuration for the 2+1 state, in contradiction with the F-spin symmetric limit. Furthermore, two strong dipole excitations, which are candidates for the two-phonon quadrupole–octupole coupled E1 excitation and for the mixed-symmetric 1+ two-phonon state, were observed.  相似文献   

19.
20.
A report is presented on the observation of Hahn echoes from the following quadrupolar nuclei of half integer spin (I) in polycrystalline solids in the large static magnetic field gradient (37.5 T/m) which exists in the fringe field of a superconducting solenoid: 7Li, 23Na, 11B, 65Cu (I = 3/2); 27Al (I = 5/2); 51V, 59Co (I = 7/2); and 115In (I = 9/2). 23Na echo-trains from NaCl (with non-selective excitation) and from Na2SO4 (with selective excitation) are compared quantitatively for two different RF pulse sequences: 90x-(τ-90y-τ-echo-)n and 90x-(τ-90x-τ-echo-)n. The signals obtained from RF pulses corresponding to non-selective 90 ° pulses were shown to be quantitative, whereas in the selective case smaller signals were obtained since only the central transition contributed. The loss of signal from this cause can be distinguished from small signals resulting from low density of nuclei by use of the second sequence. A 7Li image obtained from LiF in a cylindrical glass-vial is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号