首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
Multiple-quantum NMR spin dynamics of inhomogeneous one-dimensional systems in solids is investigated by analytical and numerical methods. A fermion approach for MQ spin dynamics of one-dimensional inhomogeneous systems is developed in the approximation of the dipole–dipole interactions (DDI) of nearest neighbors. It is shown that only MQ coherences of the zeroth and plus/minus second orders appear in the approximation of the DDI of the nearest neighbors even in inhomogeneous one-dimensional systems. We also investigate MQ dynamics of inhomogeneous chains numerically. Intensities of MQ NMR coherences for a linear chain consisting of 3000 spins are calculated.  相似文献   

2.
The multiple quantum (MQ) NMR dynamics in the system of equivalent spins with the dipolar ordered initial state is considered. The high symmetry of the Hamiltonian responsible for the MQ NMR dynamics (the MQ Hamiltonian) is used to develop analytic and numerical methods for the investigation of the MQ NMR dynamics in systems consisting of hundreds of spins from the “first principles.” We obtain the dependence of the intensities of the MQ NMR coherences on their orders (profiles of the MQ NMR coherences) for systems of 200–600 spins. It is shown that these profiles may be well approximated by exponential distribution functions. We also compare the MQ NMR dynamics in the systems of equivalent spins having two different initial states, the dipolar ordered state and the thermal equilibrium state in a strong external magnetic field.  相似文献   

3.
General formulae for intensities of multiple quantum (MQ) NMR coherences in systems of nuclear spins coupled by the dipole-dipole interactions are derived. The second moments of the MQ coherences of zero- and second orders are calculated for infinite linear chains in the approximation of the nearest neighbor interactions. Supercomputer simulations of intensities of MQ coherences of linear chains are performed at different times of preparation and evolution periods of MQ NMR experiments. The second moments obtained from the developed theory are compared with the results of the supercomputer analysis of MQ NMR dynamics. The linewidth information in MQ NMR experiments is discussed.  相似文献   

4.
We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J1 and J2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.  相似文献   

5.
We extend the picture of a transfer of nuclear spin-1/2 polarization along a homogeneous one-dimensional chain with the XY Hamiltonian to the inhomogeneous chain with alternating nearest neighbor couplings and alternating Larmor frequencies. To this end, we exactly calculate the spectrum of the spin-1/2 XY Hamiltonian of the alternating chain with an odd number of sites. The exact spectrum of the XY Hamiltonian is also applied to study the multiple quantum (MQ) NMR dynamics of the alternating spin-1/2 chain. MQ NMR spectra are shown to have the MQ coherences of zero and ± second orders just as in the case of a homogeneous chain. The intensities of the MQ coherences are calculated.  相似文献   

6.
We investigate analytically and numerically the Multiple Quantum (MQ) NMR dynamics in dipolar ordered spin systems of nuclear spins 1/2 at low temperatures. We consider two different methods of MQ NMR. One of them is based on the measurement of the dipolar energy. The other method uses an additional resonance (π/4)y-pulse after the preparation period of the standard MQ NMR experiment in solids and allows one to measure the Zeeman energy. Both considered methods are sensitive to the contribution of remote spins in the interaction and to the spin system structure. The QS method is sensitive to the spin number in the molecule while the PS method gives very similar time dependencies of the intensities of MQ coherences for different spin numbers. It is shown that the use of the dipolar ordered initial state has the advantage of exciting the highest order MQ coherences in clusters of 4m identical spins, where m=1,2,3,…, that is impossible to do with the standard MQ method. MQ NMR methods based on the dipolar ordered initial states at low temperatures complement the standard NMR spectroscopy for better studying structures and dynamic processes in solids.  相似文献   

7.
We investigate the evolution of entanglement in multiple-quantum (MQ) NMR experiments in crystals with pairs of close nuclear 1/2-spins. The initial thermodynamic equilibrium state of the system in a strong external magnetic field evolves under the nonsecular part of the dipolar Hamiltonian. As a result, MQ coherences of the zeroth and plus/minus second orders appear. A simple condition for the emergence of entanglement is obtained. We show that the measure of the spin-pair entanglement—concurrence—coincides qualitatively with the intensity of MQ coherences of the plus/minus second order and, hence, the entanglement can be studied with MQ NMR methods. We introduce an entanglement witness using MQ NMR coherences of the plus/minus second order. The text was submitted by the authors in English.  相似文献   

8.
Multiple quantum spin dynamics is studied using analytical and numerical methods for one-dimensional finite systems of nuclear spins 12 coupled by dipole-dipole interactions at low temperatures. Exact expressions for intensities of multiple quantum coherences at low temperatures were obtained in the approximation of the nearest neighbor interactions. The time growth of multiple quantum coherences was analyzed numerically when all the dipole-dipole interactions in one-dimensional systems consisting of 6/8 spins were taken into account. It is shown that the growth of multiple quantum coherences gets faster when the temperature decreases, and the intensities of multiple quantum coherences can be negative at low temperatures.  相似文献   

9.
Multiple-quantum spin dynamics is studied using analytic and numerical methods for one-dimensional finite linear chains and rings of nuclear spins 1/2 coupled by dipole-dipole interactions. An approximation of dipole-dipole interaction between nearest neighbors having the same constants is used to obtain exact expressions for the intensities of the multiple-quantum coherences in the spin systems studied, which are initially in thermal equilibrium and whose evolution is described by a two-spin two-quantum Hamiltonian. An approximation of nearest neighbors with arbitrary dipole-dipole interaction constants is used to establish a simple relationship between the multiple-quantum dynamics and the dynamics of spin systems with an XY Hamiltonian. Numerical methods are developed to calculate the intensities of multiple-quantum coherences in multiple-quantum NMR spectroscopy. The integral of motion is obtained to expand the matrix of the two-spin two-quantum Hamiltonian into two independent blocks. Using the nearest-neighbor approximation the Hamiltonian is factorized according to different values of the projection operator of the total spin momentum on the direction of the external magnetic field. Results of calculations of the multiple-quantum dynamics in linear chains of seven and eight nuclear spins and a six-spin ring are presented. It is shown that the evolution of the intensities of the lowest-order multiple-quantum coherences in linear chains is accurately described allowing for dipole-dipole interaction of nearest and next-nearest neighbors only. Numerical calculations are used to compare the contributions of nearest and remote spins to the intensities of the multiple-quantum coherences.  相似文献   

10.
A new analytical Liouville-space representation of the time-propagator under magic angle spinning (MAS) is introduced using the formalized quantum Floquet theory. This approach has the advantage that it is applicable to the analysis of any type of NMR experiment where MAS is combined with multiple-pulse excitation. General relationships describing the spectral parameters in multiple-quantum (MQ) MAS spectra are derived in this representation. Their use is illustrated with an application to double-quantum (DQ) NMR spectra of dipolar-coupled multi-spin systems. Corresponding to the separation of the MAS time-propagator into a rotor modulated and a dephasing component, two distinct mechanisms for DQ excitation are identified. One of them exploits the rotor-modulated component to excite DQ coherences through dipolar-recoupling techniques, which are familiar for spin pairs. Analytical expressions of the integral intensities and linewidths in the resulting DQ sideband pattern are derived in the form of power series expansions of the inverse rotor frequency, of which coefficients depend on structural parameters. In a multi-spin system they can most reliably be extracted in the fast spinning regime. The other mechanism exploits the dephasing component, which is characteristic to multi-spin systems only. This is shown to give rise to DQ coherences by free evolution at full rotor periods. The possibility to exploit it for selective excitation of higher order MQ coherences is discussed. In either case, the dephasing component also leads to residual broadening. The main results of the theoretical developments are demonstrated experimentally on adamantane.  相似文献   

11.
Dipolar relaxation of multiple quantum (MQ) nuclear magnetic resonance (NMR) coherence is investigated on the evolution period of the MQ NMR experiment in chains of 19F nuclei in a single crystal of calcium fluorapatite. The dependence of the relaxation time of the MQ coherence of the second order on the size of the coherent spin cluster formed on the preparation period is obtained. The dipolar relaxation of MQ NMR coherences is considered as a model for the investigation of decoherence of quantum states of many-qubit spin clusters.  相似文献   

12.
We investigate analytically and numerically the multiple-quantum (MQ) NMR dynamics in systems of nuclear spins 1/2 coupled by dipole-dipole interactions in the case of the dipolar-ordered initial state. We suggest a new method of MQ NMR based on the measurement of the dipolar temperature in the quasi-equilibrium state, which establishes after the time of order ω loc −1loc is the dipolar local field) after the MQ NMR experiment. Manyspin clusters and correlations are created faster in such an experiment than in usual MQ NMR experiments and can be used for the investigation of the many-spin dynamics of nuclear spins in solids. The text was submitted by the authors in English.  相似文献   

13.
Cross-polarization from (1)H to the multiple-quantum coherences of a quadrupolar nucleus is used in combination with the two-dimensional multiple-quantum magic angle spinning (MQMAS) NMR experiment in order to extract high-resolution CPMAS NMR spectra. The technique is demonstrated on (23)Na (S = 3/2), (17)O, (27)Al (both S = 5/2), and (45)Sc (S = 7/2) nuclei, showing the applicability of multiple-quantum cross-polarization to systems with differing spin quantum number, gyromagnetic ratio, and relative nuclide abundance. The utility of this two-dimensional MAS NMR experiment for spectral editing and site-specific measurement of cross-polarization intensities is demonstrated. The possibility of direct cross-polarization to higher order multiple-quantum coherences is also considered and three-, five-, and seven-quantum cross-polarized (45)Sc MAS NMR spectra are presented.  相似文献   

14.
We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin-72 systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90 degrees pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc2(SO4)3 x 5H2O and the 139La NMR of LaAlO3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.  相似文献   

15.
Variations, experimentally observed in [14], in the intensity profiles of multiple-quantum (MQ) coherences in the presence of two special types of perturbations are explained on the basis of the theory, earlier developed by the authors, of the growth of the effective size of correlated clusters (the number of correlated spins) and the relaxation of MQ coherent states [23]. The intensity and the character of perturbation were controlled by the experimenters. It is shown that the observed stabilization of profiles with time is not associated with the stabilization of the cluster size. Quite the contrary, a cluster of correlated spins monotonically grows, while the observed variations in the intensity profile and its stabilization with time are attributed to the dependence of the decay rate of an MQ coherence on its order (its position in the MQ spectrum). The results of the theory are in good agreement with the experimental data.  相似文献   

16.
The technique of multiple-quantum J-resolved NMR spectroscopy (MQ-JRES) is introduced and applied to the spin system SI(3)-M (such as in the example given here, the (13)CH(3)-(12)CH in alanine). The SI(3) spin system was excited to its highest quantum state (8S(y)I(x)I(y)I(y)), which consists of four coherences: quadruple quantum of (3I + S), double quantum of (3I - S), double quantum of (I + S), and zero quantum of (I - S). In the MQ spectrum generated from the projection onto the F(1) dimension, the resonances of the different multiple-quantum coherences are resolved by their coupling constants to the remote spin (M). The absorptive lineshapes in both F(1) and F(2) dimensions enable accurate measurements of transverse relaxation rates, and both amplitude and relative signs of the long-range coupling constants are to be derived from either frequency or time domain data. The selective detection of MQ-JRES spectra of the individual MQ coherences using either phase cycling or pulsed field gradients is presented.  相似文献   

17.
This Letter presents a two-dimensional nuclear magnetic resonance (NMR) approach for constructing a two-logical-qubit decoherence-free subspace (DFS) by using four multiple-quantum coherences of a CH3 spin system as logical qubits. The three protons in this spin system are magnetically equivalent and can only be used as a single qubit in one-dimensional NMR. We have experimentally demonstrated that our DFS can protect against more types of decoherences than those of the one composed of four noisy physical qubits all with different chemical shifts. This idea may provide new insights into extending qubit systems in the sense that it effectively utilizes the magnetically equivalent nuclei.  相似文献   

18.
In the past few years, solid-state 1H NMR spectroscopy under fast magic-angle spinning (MAS) has developed into a versatile tool for elucidating structure and dynamics. Dipolar multiple-quantum (MQ), in particular double-quantum (DQ), MAS spectroscopy has been applied to a variety of materials and provided unique insight, e.g., into the structure of hydrogen-bonded systems. This review intends to present solid-state 1H DQ and MQ MAS spectroscopy in a systematic fashion with a particular emphasis on methodological aspects, followed by an overview of applications.  相似文献   

19.
In the past few years, solid-state 1H NMR spectroscopy under fast magic-angle spinning (MAS) has developed into a versatile tool for elucidating structure and dynamics. Dipolar multiple-quantum (MQ), in particular double-quantum (DQ), MAS spectroscopy has been applied to a variety of materials and provided unique insight, e.g., into the structure of hydrogen-bonded systems. This review intends to present solid-state 1H DQ and MQ MAS spectroscopy in a systematic fashion with a particular emphasis on methodological aspects, followed by an overview of applications.  相似文献   

20.
Quantum energy coherences represent a thermodynamic resource, which can be exploited to extract energy from a thermal reservoir and deliver that energy as work. We argue that there exists a closely analogous classical thermodynamic resource, namely, energy-shell inhomogeneities in the phase space distribution of a system’s initial state. We compare the amount of work that can be obtained from quantum coherences with the amount that can be obtained from classical inhomogeneities, and find them to be equal in the semiclassical limit. We thus conclude that coherences do not provide a unique thermodynamic advantage of quantum systems over classical systems, in situations where a well-defined semiclassical correspondence exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号