首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a graph G and a set \({\mathcal{F}}\) of connected graphs, G is said be \({\mathcal{F}}\) -free if G does not contain any member of \({\mathcal{F}}\) as an induced subgraph. We let \({\mathcal{G} _{3}(\mathcal{F})}\) denote the set of all 3-connected \({\mathcal{F}}\) -free graphs. This paper is concerned with sets \({\mathcal{F}}\) of connected graphs such that \({\mathcal{F}}\) contains no star, \({|\mathcal{F}|=3}\) and \({\mathcal{G}_{3}(\mathcal{F})}\) is finite. Among other results, we show that for a connected graph T( ≠ K 1) which is not a star, \({\mathcal{G}_{3}(\{K_{4},K_{2,2},T\})}\) is finite if and only if T is a path of order at most 6.  相似文献   

2.
Let X be a finite or infinite chain and let \({\mathcal{O}}(X)\) be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of \({\mathcal{O}}(X)\) and Green’s relations on \({\mathcal{O}}(X)\) . In fact, more generally, if Y is a nonempty subset of X and \({\mathcal{O}}(X,Y)\) is the subsemigroup of \({\mathcal{O}}(X)\) of all elements with range contained in Y, we characterize the largest regular subsemigroup of \({\mathcal{O}}(X,Y)\) and Green’s relations on \({\mathcal{O}}(X,Y)\) . Moreover, for finite chains, we determine when two semigroups of the type \({\mathcal {O}}(X,Y)\) are isomorphic and calculate their ranks.  相似文献   

3.
Fei Xu 《Archiv der Mathematik》2014,103(3):235-253
Let \({\mathcal{C}}\) be a finite EI category and k be a field. We consider the category algebra \({k\mathcal{C}}\) . Suppose \({\sf{K}(\mathcal{C})=\sf{D}^b(k \mathcal{C}-\sf{mod})}\) is the bounded derived category of finitely generated left modules. This is a tensor triangulated category, and we compute its spectrum in the sense of Balmer. When \({\mathcal{C}=G \propto \mathcal{P}}\) is a finite transporter category, the category algebra becomes Gorenstein, so we can define the stable module category \({\underline{\sf{CM}} k(G \propto \mathcal{P})}\) , of maximal Cohen–Macaulay modules, as a quotient category of \({{\sf{K}}(G \propto \mathcal{P})}\) . Since \({\underline{\sf{CM}} k(G\propto\mathcal{P})}\) is also tensor triangulated, we compute its spectrum as well. These spectra are used to classify tensor ideal thick subcategories of the corresponding tensor triangulated categories.  相似文献   

4.
For a domain \(\varOmega \) in \(\mathbb {C}\) and an operator \(T\) in \({\mathcal {B}}_n(\varOmega )\) , Cowen and Douglas construct a Hermitian holomorphic vector bundle \(E_T\) over \(\varOmega \) corresponding to \(T\) . The Hermitian holomorphic vector bundle \(E_T\) is obtained as a pull-back of the tautological bundle \(S(n,{\mathcal {H}})\) defined over \({\mathcal {G}}r(n,{\mathcal {H}})\) by a nondegenerate holomorphic map \(z\mapsto {\mathrm{ker}}(T-z),\;z\in \varOmega \) . To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank \(n\) Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle \({\mathcal {J}}_k({\mathcal {L}}_f)\) , we have shown that the curvature of the line bundle \({\mathcal {L}}_f\) completely determines the class of \({\mathcal {J}}_k({\mathcal {L}}_f)\) . In case of rank \(n\) Hermitian holomorphic vector bundle \(E_f\) , We have calculated the curvature of jet bundle \({\mathcal {J}}_k(E_f)\) and also obtained a trace formula for jet bundle \({\mathcal {J}}_k(E_f)\) .  相似文献   

5.
This article is concerned with Ramanujan sums ${c_{\mathcal{I}_1}(\mathcal{I}),}$ where ${\mathcal{I},\mathcal{I}_1}$ are integral ideals in an arbitrary quadratic number field ${\mathbb{Q}(\sqrt{d}).}$ In particular, the asymptotic behavior of sums of ${c_{\mathcal{I}_1}(\mathcal{I}),}$ over both ${\mathcal{I}}$ and ${c_{\mathcal{I}_1}(\mathcal{I}),}$ is investigated.  相似文献   

6.
In De Winter and Thas (Des Codes Cryptogr, 32, 153–166, 2004) a semipartial geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ was constructed from any Buekenhout–Metz unital ${\mathcal{U}}$ in PG(2,q2), and it was shown that, although having the same parameters, ${\mathcal{S}(\overline{\mathcal{U})}\not\cong T_2^*(\mathcal{U})}$ , where ${T_2^*\mathcal{U}}$ is the semipartial geometry arising from the linear representation of ${\mathcal{U}}$ . In this note, we will first briefly overview what is known on the geometry ${\mathcal{S}(\overline{\mathcal{U})}}$ (providing shortened unpublished proofs for most results). Then we answer the following question of G. Ebert affirmatively: “Do non-isomorphic Buekenhout–Metz unitals ${\mathcal{U}_1}$ and ${\mathcal{U}_2}$ yield non-isomorphic semipartial geometries ${\mathcal{S}(\overline{\mathcal{U}}_1)}$ and ${\mathcal{S}(\overline{\mathcal{U}}_2)}$ ?”.  相似文献   

7.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

8.
9.
We say that a directed graph is pre-bipartite if its symmetric closure is bipartite. We will show that the class ${\mathcal{B}}$ of all pre-bipartite digraphs containing no cycles is a universal Horn class. Let ${\mathcal{U}}$ be a universal Horn class contained in ${\mathcal{B}}$ . We determine when it is possible to axiomatise, by first-order sentences, the class ${\mathcal{R}_{\rm CT}(\mathcal{U}_{\rm fin})}$ of compact topological digraphs that are topologically residually in the class of finite members of ${\mathcal{U}}$ . We show that if ${\mathcal{R}_{\rm CT}(\mathcal{U}_{\rm fin})}$ is axiomatisable by first-order sentences, then it is axiomatisable by universal Horn sentences.  相似文献   

10.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

11.
Let \({\mathcal{P}}\) be an ideal of closed quotients of a completely regular frame L and \({\mathcal{R}_{\mathcal{P}}(L)}\) the collection of all functions in the ring \({\mathcal{R}(L)}\) whose support belong to \({\mathcal{P}}\) . We show that \({\mathcal{R}(L)}\) is a Noetherian ring if and only if \({\mathcal{R}(L)}\) is an Artinian ring if and only if L is a finite frame. Using this result, we next show that if \({\mathcal{P}}\) is the ideal of all compact closed quotients of L and L is \({\mathcal{P}}\) -continuous, then \({\mathcal{R}_{\mathcal{P}}(L)}\) is a Noetherian ring if and only if L is finite. Moreover, we show that L is a P-frame if and only if each ideal of \({\mathcal{R}(L)}\) is of the form \({\mathcal{R}_{\mathcal{P}}(L)}\) for some choice of \({\mathcal{P}}\) . We furnish equivalent conditions for \({\mathcal{R}_{\mathcal{P}}(L)}\) to be a prime ideal, a free ideal, and an essential ideal of \({\mathcal{R}(L)}\) separately in terms of the cozero elements of L. Finally, we show that L is basically disconnected if and only if \({\mathcal{R}(L)}\) is a coherent ring.  相似文献   

12.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

13.
Suppose that \({\mathbb {E}}:=\{E_r(x)\}_{r\in {\mathcal {I}}, x\in X}\) is a family of open subsets of a topological space \(X\) endowed with a nonnegative Borel measure \(\mu \) satisfying certain basic conditions. We establish an \(\mathcal {A}_{{\mathbb {E}}, p}\) weights theory with respect to \({\mathbb {E}}\) and get the characterization of weighted weak type (1,1) and strong type \((p,p)\) , \(1<p\le \infty \) , for the maximal operator \({\mathcal {M}}_{{\mathbb {E}}}\) associated with \({\mathbb {E}}\) . As applications, we introduce the weighted atomic Hardy space \(H^1_{{\mathbb {E}}, w}\) and its dual \(BMO_{{\mathbb {E}},w}\) , and give a maximal function characterization of \(H^1_{{\mathbb {E}},w}\) . Our results generalize several well-known results.  相似文献   

14.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

15.
For any positive integer r, denote by \({\mathcal{P}_{r}}\) the set of all integers \({\gamma \in \mathbb{Z}}\) having at most r prime divisors. We show that \({C_{\mathcal{P}_{r}}(\mathbb{T})}\) , the space of all continuous functions on the circle \({\mathbb{T}}\) whose Fourier spectrum lies in \({\mathcal{P}_{r}}\) , contains a complemented copy of \({\ell^{1}}\) . In particular, \({C_{\mathcal{P}_{r}}(\mathbb{T})}\) is not isomorphic to \({C(\mathbb{T})}\) , nor to the disc algebra \({A(\mathbb{D})}\) . A similar result holds in the L 1 setting.  相似文献   

16.
For a given class \({\mathcal{G}}\) of groups, a 3-manifold M is of \({\mathcal{G}}\) -category \({\leq k}\) if it can be covered by k open subsets such that for each path-component W of the subsets the image of its fundamental group \({ \pi_1(W) \rightarrow \pi(M )}\) belongs to \({\mathcal{G}}\) . The smallest number k such that M admits such a covering is the \({\mathcal{G}}\) -category, \({cat_{\mathcal{G}}(M)}\) . If M is closed, it has \({\mathcal{G}}\) -category between 1 and 4. We characterize all closed 3-manifolds of \({\mathcal{G}}\) -category 1, 2, and 3 for various classes \({\mathcal{G}}\) .  相似文献   

17.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k such that the indecomposable \(\mathcal{A}\) -modules are determined by their dimension vectors and for each \(M, L \in ind(\mathcal{A})\) and \(N\in mod(\mathcal{A})\) , either \(F^{M}_{N L}=0\) or \(F^{M}_{L N}=0\) . We show that \(\mathcal{A}\) has Hall polynomials and the rational extension of its Ringel–Hall algebra equals the rational extension of its composition algebra. This result extend and unify some known results about Hall polynomials. As a consequence we show that if \(\mathcal{A}\) is a representation finite simply-connected algebra, or finite dimensional k-algebra such that there are no short cycles in \(mod(\mathcal{A})\) , or representation finite cluster tilted algebra, then \(\mathcal{A}\) has Hall polynomials and \(\mathcal{H}(\mathcal{A})\otimes_\mathbb{Z}Q=\mathcal{C}(\mathcal{A})\otimes_\mathbb{Z}Q\) .  相似文献   

18.
An edge colored graph is called a rainbow if no two of its edges have the same color. Let ? and $\mathcal{G}$ be two families of graphs. Denote by $RM({\mathcal{H}},\mathcal{G})$ the smallest integer R, if it exists, having the property that every coloring of the edges of K R by an arbitrary number of colors implies that either there is a monochromatic subgraph of K R that is isomorphic to a graph in ? or there is a rainbow subgraph of K R that is isomorphic to a graph in $\mathcal{G}$ . ${\mathcal{T}}_{n}$ is the set of all trees on n vertices. ${\mathcal{T}}_{n}(k)$ denotes all trees on n vertices with diam(T n (k))≤k. In this paper, we investigate $RM({\mathcal{T}}_{n},4K_{2})$ , $RM({\mathcal{T}}_{n},K_{1,4})$ and $RM({\mathcal{T}}_{n}(4),K_{3})$ .  相似文献   

19.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^{p}(\mathbb{R}, w)}$ , where ${p \in (1, \infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{A}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a \in PSO^{\diamond}}$ ) and all convolution operators W 0(b) ( ${b \in PSO_{p,w}^{\diamond}}$ ), where ${PSO^{\diamond} \subset L^{\infty}(\mathbb{R})}$ and ${PSO_{p,w}^{\diamond} \subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R} \cup \{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^{p}(\mathbb{R}, w)}$ . Under some conditions on the Muckenhoupt weight w, we construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{A}_{p,w}}$ and establish a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ in terms of their Fredholm symbols. To study the Banach algebra ${\mathfrak{A}_{p,w}}$ we apply the theory of Mellin pseudodifferential operators, the Allan–Douglas local principle, the two idempotents theorem and the method of limit operators. The paper is divided in two parts. The first part deals with the local study of ${\mathfrak{A}_{p,w}}$ and necessary tools for studying local algebras.  相似文献   

20.
Let \(\mathcal{{A}}\) be a Banach algebra and let \(\mathcal{{X}}\) be an introverted closed subspace of \(\mathcal{{A}}^*\) . Here, we give necessary and sufficient conditions for that the dual algebra \(\mathcal{{X}}^*\) of \(\mathcal{{X}}\) or the topological centers \({\mathfrak {Z}}_t^{(1)}(\mathcal{{X}}^{*})\) and \({\mathfrak {Z}}_t^{(2)}(\mathcal{{X}}^{*})\) of \(\mathcal{{X}}^*\) are Banach \(*\) -algebras. We finally apply these results to the Banach space \(L_0^\infty (G)\) of all equivalence classes of essentially bounded functions vanishing at infinity on a locally compact group \(G\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号