首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(p\) and \(q\) be two odd primes with \(p=Mf+1\) and \(M\) is even. A new construction of \(M\) -ary sequences of period \(pq\) with low periodic autocorrelation is presented in this paper based on interleaving the \(M\) -ary power residue sequence of period \(p\) according to the quadratic residue with respect to \(q\) . This construction can generate the well-known twin-prime sequence and generalized cyclotomy sequence of order two if \(M=2\) . For \(M=4\) , a new class of quaternary sequences of period \(pq\) with maximal nontrivial autocorrelation value being either \(\sqrt{5}\) or \(3\) is obtained. This achieves the best known results for such kind of quaternary sequences.  相似文献   

2.
Let \(q\) be a power of a prime integer \(p, m=p^em_0\) and \(|q|_{m_{0}}\) the order of \(q\) modulo \(m_0\) . By use of finite commutative chain ring theory, an algorithm to construct all distinct 1-generator quasi-cyclic codes with a fixed parity check polynomial over a finite field \(F_q\) of length \(mn\) and index \(n\) , under the condition that \(\mathrm {gcd}(|q|_{m_0},n)=1\) , are given.  相似文献   

3.
Let \(A\) and \(B\) be two points of \(\mathrm{{PG}}(2,q^n)\) , and let \(\Phi \) be a collineation between the pencils of lines with vertices \(A\) and \(B\) . In this paper, we prove that the set of points of intersection of corresponding lines under \(\Phi \) is either the union of a scattered \(\mathrm{{GF}}(q)\) -linear set of rank \(n+1\) with the line \(AB\) or the union of \(q-1\) scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n\) with \(A\) and \(B\) . We also determine the intersection configurations of two scattered \(\mathrm{{GF}}(q)\) -linear sets of rank \(n+1\) of \(\mathrm{{PG}}(2,q^n)\) both meeting the line \(AB\) in a \(\mathrm{{GF}}(q)\) -linear set of pseudoregulus type with transversal points \(A\) and \(B\) .  相似文献   

4.
Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph \(\mathcal{G }_q(n,r)\) by subspaces from the Grassmann graph \(\mathcal{G }_q(n,k)\) , \(k \ge r\) , are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, \(q\) -analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and a recursive construction. New constructions are given for \(q=2\) with \(r=2\) or \(r=3\) . We discuss the density for some of these coverings. Tables for the best known coverings, for \(q=2\) and \(5 \le n \le 10\) , are presented. We present some questions concerning possible constructions of new coverings of smaller size.  相似文献   

5.
We study the composition operator \(T_f(g):= f\circ g\) on Besov spaces \(B_{{p},{q}}^{s}(\mathbb{R })\) . In case \(1 < p< +\infty ,\, 0< q \le +\infty \) and \(s>1+ (1/p)\) , we will prove that the operator \(T_f\) maps \(B_{{p},{q}}^{s}(\mathbb{R })\) to itself if, and only if, \(f(0)=0\) and \(f\) belongs locally to \(B_{{p},{q}}^{s}(\mathbb{R })\) . For the case \(p=q\) , i.e., in case of Slobodeckij spaces, we can extend our results from the real line to \(\mathbb{R }^n\) .  相似文献   

6.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

7.
Suppose that \(G\) is a finite group and \(H\) , \(K\) are subgroups of \(G\) . We say that \(H\) is weakly closed in \(K\) with respect to \(G\) if, for any \(g \in G\) such that \(H^{g}\le K\) , we have \(H^{g}=H\) . In particular, when \(H\) is a subgroup of prime-power order and \(K\) is a Sylow subgroup containing it, \(H\) is simply said to be a weakly closed subgroup of \(G\) or weakly closed in \(G\) . In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.  相似文献   

8.
Let \(M\) be an \(R\) - \(R\) -bimodule over a semi-prime right and left Goldie ring \(R\) . We investigate how non-singularity conditions on \(M_R\) are related to such conditions on \(_RM\) . In particular, we say an \(R\) - \(R\) -bimodule \(M\) such that \(_RM\) and \(M_R\) are non-singular has the right essentiality property if \(IM_R\) is essential in \(M_R\) for all essential right ideals \(I\) of \(R\) , and investigate several questions related to this property.  相似文献   

9.
The prime graph \(\Delta (G)\) of a finite group \(G\) is a graph whose vertices are the primes which divide the degrees of some irreducible complex characters of \(G\) and two distinct primes \(p\) and \(q\) are joined by an edge if the product \(pq\) divides some character degree of \(G\) . In this paper, we determine the upper bounds for the numbers of vertices of the prime graphs of finite groups which possess a small number of triangles. In some cases, we study the structure of such finite groups and their prime graphs in detail.  相似文献   

10.
We present a new construction for covering arrays inspired by ideas from Munemasa (Finite Fields Appl 4:252–260, 1998) using linear feedback shift registers (LFSRs). For a primitive polynomial \(f\) of degree \(m\) over \(\mathbb F _q\) , by taking all unique subintervals of length \(\frac{q^m-1}{q-1}\) from the LFSR generated by \(f\) , we derive a general construction for optimal variable strength orthogonal arrays over an infinite family of abstract simplicial complexes. For \(m=3\) , by adding the subintervals of the reversal of the LFSR to the variable strength orthogonal array, we derive a strength-3 covering array over \(q^2+q+1\) factors, each with \(q\) levels that has size only \(2q^3-1\) , i.e. a \(\text {CA}(2q^3-1; 3, q^2+q+1, q)\) whenever \(q\) is a prime power. When \(q\) is not a prime power, we obtain results by using fusion operations on the constructed array for higher prime powers and obtain improved bounds. Colbourn maintains a repository of the best known bounds for covering array sizes for all \(2 \le q \le 25\) . Our construction, with fusing when applicable, currently holds records of the best known upper bounds in this repository for all \(q\) except \(q = 2,3,6\) . By using these covering arrays as ingredients in recursive constructions, we build covering arrays over larger numbers of factors, again providing significant improvements on the previous best upper bounds.  相似文献   

11.
Suppose that \(G\) is a finite group and \(H\) is a subgroup of \(G\) . \(H\) is said to be \(s\) -quasinormally embedded in \(G\) if for each prime \(p\) dividing the order of \(H\) , a Sylow \(p\) -subgroup of \(H\) is also a Sylow \(p\) -subgroup of some \(s\) -quasinormal subgroup of \(G\) . We fix in every non-cyclic Sylow subgroup \(P\) of \(G\) some subgroup \(D\) satisfying \(1<|D|<|P|\) and study the \(p\) -nilpotency of \(G\) under the assumption that every subgroup \(H\) of \(P\) with \(|H|=|D|\) is \(s\) -quasinormally embedded in \(G\) . Some recent results and the Frobenius \(^{\prime }\) theorem are generalized.  相似文献   

12.
For a finite group \(G\) , let \(d(G)\) denote the probability that a randomly chosen pair of elements of \(G\) commute. We prove that if \(d(G)>1/s\) for some integer \(s>1\) and \(G\) splits over an abelian normal nontrivial subgroup \(N\) , then \(G\) has a nontrivial conjugacy class inside \(N\) of size at most \(s-1\) . We also extend two results of Barry, MacHale, and Ní Shé on the commuting probability in connection with supersolvability of finite groups. In particular, we prove that if \(d(G)>5/16\) then either \(G\) is supersolvable, or \(G\) isoclinic to \(A_4\) , or \(G/\mathbf{Z}(G)\) is isoclinic to \(A_4\) .  相似文献   

13.
The Johnson graph \(J(v,k)\) has, as vertices, the \(k\) -subsets of a \(v\) -set \(\mathcal {V}\) and as edges the pairs of \(k\) -subsets with intersection of size \(k-1\) . We introduce the notion of a neighbour-transitive code in \(J(v,k)\) . This is a proper vertex subset \(\Gamma \) such that the subgroup \(G\) of graph automorphisms leaving \(\Gamma \) invariant is transitive on both the set \(\Gamma \) of ‘codewords’ and also the set of ‘neighbours’ of \(\Gamma \) , which are the non-codewords joined by an edge to some codeword. We classify all examples where the group \(G\) is a subgroup of the symmetric group \(\mathrm{Sym}\,(\mathcal {V})\) and is intransitive or imprimitive on the underlying \(v\) -set \(\mathcal {V}\) . In the remaining case where \(G\le \mathrm{Sym}\,(\mathcal {V})\) and \(G\) is primitive on \(\mathcal {V}\) , we prove that, provided distinct codewords are at distance at least \(3\) , then \(G\) is \(2\) -transitive on \(\mathcal {V}\) . We examine many of the infinite families of finite \(2\) -transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.  相似文献   

14.
15.
Reed–Solomon and BCH codes were considered as kernels of polar codes by Mori and Tanaka (IEEE Information Theory Workshop, 2010, pp 1–5) and Korada et al. (IEEE Trans Inform Theory 56(12):6253–6264, 2010) to create polar codes with large exponents. Mori and Tanaka showed that Reed–Solomon codes over the finite field \(\mathbb {F}_q\) with \(q\) elements give the best possible exponent among all codes of length \(l \le q\) . They also stated that a Hermitian code over \(\mathbb {F}_{2^r}\) with \(r \ge 4\) , a simple algebraic geometric code, gives a larger exponent than the Reed–Solomon matrix over the same field. In this paper, we expand on these ideas by employing more general algebraic geometric (AG) codes to produce kernels of polar codes. Lower bounds on the exponents are given for kernels from general AG codes, Hermitian codes, and Suzuki codes. We demonstrate that both Hermitian and Suzuki kernels have larger exponents than Reed–Solomon codes over the same field, for \(q \ge 3\) ; however, the larger exponents are at the expense of larger kernel matrices. Comparing kernels of the same size, though over different fields, we see that Reed–Solomon kernels have larger exponents than both Hermitian and Suzuki kernels. These results indicate a tradeoff between the exponent, kernel matrix size, and field size.  相似文献   

16.
In this paper, we compute \(K\) -groups \(\{K_{n}(C^{*}(x))\}_{n=0}^{\infty }\) of the \(C^{*}\) -subalgebra \(C^{*}(x)\) of \(B(H),\) generated by a single operator \(x,\) where \(H\) is a separable infinite dimensional Hilbert space, and \(B(H)\) is the operator algebra consisting of all (bounded linear) operators on \(H.\) These computations not only provide nice examples in \(K\) -theory, but also characterize-and-classify projections in a \(C^{*}\) -algebra generated by a single operator. The main result of this paper shows that: the \(K\) -groups of \(C^{*}(x)\) are completely characterized by those of \(C^{*}(q),\) where \(q\) is the positive-operator part of \(x\) in the polar decomposition of \(x.\)   相似文献   

17.
The linear complexity and the \(k\) -error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the \(k\) -error linear complexity distribution of \(2^n\) -periodic binary sequences in this paper based on Games–Chan algorithm. First, for \(k=2,3\) , the complete counting functions for the \(k\) -error linear complexity of \(2^n\) -periodic binary sequences (with linear complexity less than \(2^n\) ) are characterized. Second, for \(k=3,4\) , the complete counting functions for the \(k\) -error linear complexity of \(2^n\) -periodic binary sequences with linear complexity \(2^n\) are presented. Third, as a consequence of these results, the counting functions for the number of \(2^n\) -periodic binary sequences with the \(k\) -error linear complexity for \(k = 2\) and \(3\) are obtained.  相似文献   

18.
Let \(K\) be a global field and \(G\) a finite solvable \(K\) -group. Under certain hypotheses concerning the extension splitting \(G\) , we show that the homogeneous space \(V=G'/G\) with \(G'\) a semi-simple simply connected \(K\) -group has the weak approximation property. We use a more precise version of this result to prove the Hasse principle for homogeneous spaces \(X\) under a semi-simple simply connected \(K\) -group \(G'\) with finite solvable geometric stabilizer \({\bar{G}}\) , under certain hypotheses concerning the \(K\) -kernel (or \(K\) -lien) \(({\bar{G}},\kappa )\) defined by \(X\) .  相似文献   

19.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

20.
Let \(K\subset \mathbb R ^N\) be a convex body containing the origin. A measurable set \(G\subset \mathbb R ^N\) with positive Lebesgue measure is said to be uniformly \(K\) -dense if, for any fixed \(r>0\) , the measure of \(G\cap (x+r K)\) is constant when \(x\) varies on the boundary of \(G\) (here, \(x+r K\) denotes a translation of a dilation of \(K\) ). We first prove that \(G\) must always be strictly convex and at least \(C^{1,1}\) -regular; also, if \(K\) is centrally symmetric, \(K\) must be strictly convex, \(C^{1,1}\) -regular and such that \(K=G-G\) up to homotheties; this implies in turn that \(G\) must be \(C^{2,1}\) -regular. Then for \(N=2\) , we prove that \(G\) is uniformly \(K\) -dense if and only if \(K\) and \(G\) are homothetic to the same ellipse. This result was already proven by Amar et al. in 2008 . However, our proof removes their regularity assumptions on \(K\) and \(G\) , and more importantly, it is susceptible to be generalized to higher dimension since, by the use of Minkowski’s inequality and an affine inequality, avoids the delicate computations of the higher-order terms in the Taylor expansion near \(r=0\) for the measure of \(G\cap (x+r\,K)\) (needed in 2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号