首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let \(p_1 \equiv p_2 \equiv 5\pmod 8\) be different primes. Put \(i=\sqrt{-1}\) and \(d=2p_1p_2\) , then the bicyclic biquadratic field \(\mathbb {k}=\mathbb {Q}(\sqrt{d},i)\) has an elementary abelian 2-class group of rank \(3\) . In this paper we determine the nilpotency class, the coclass, the generators and the structure of the non-abelian Galois group \(\mathrm {Gal}(\mathbb {k}_2^{(2)}/\mathbb {k})\) of the second Hilbert 2-class field \(\mathbb {k}_2^{(2)}\) of \(\mathbb {k}\) . We study the capitulation problem of the 2-classes of \(\mathbb {k}\) in its seven unramified quadratic extensions \(\mathbb {K}_i\) and in its seven unramified bicyclic biquadratic extensions \(\mathbb {L}_i\) .  相似文献   

2.
We give a complete characterization of a supercyclic abelian semigroup of matrices on \(\mathbb {C}^{n}\) . For finitely generated semigroups, this characterization is explicit and it is used to determine the minimal number of matrices in normal form over \(\mathbb {C}\) that form a supercyclic abelian semigroup on \({\mathbb {C}}^{n}\) . In particular, no abelian semigroup generated by \(n-1\) matrices on \(\mathbb {C}^{n}\) can be supercyclic.  相似文献   

3.
The space of entire functions \(\mathcal {F}_{\alpha }^{\infty }\) is mentioned in the paper of S. Janson, J. Peetre, and R. Rochberg. In this paper, we establish a characterization for the space \(\mathcal {F}_{\alpha }^{\infty }\) by \(n\) -th derivatives of entire functions. As an application of this result, we study the boundedness of Li-Stevi?’s integral operators and estimate essential norms of these operators acting on \(\mathcal {F}_{\alpha }^{\infty }\) . Furthermore we describe complete characterizations for boundedness and compactness of the Volterra-type integral operators on \(\mathcal {F}_{\alpha }^{\infty }\) .  相似文献   

4.
Let \(\eta : C_{f,N}\rightarrow \mathbb {P}^1\) be a cyclic cover of \(\mathbb {P}^1\) of degree \(N\) which is totally and tamely ramified for all the ramification points. We determine the group of fixed points of the cyclic covering group \({{\mathrm{Aut}}}(\eta )\simeq \mathbb {Z}/ N \mathbb {Z}\) acting on the Jacobian \(J_N:={{\mathrm{Jac}}}(C_{f,N})\) . For each prime \(\ell \) distinct from the characteristic of the base field, the Tate module \(T_\ell J_N\) is shown to be a free module over the ring \(\mathbb {Z}_\ell [T]/(\sum _{i=0}^{N-1}T^i)\) . We also study the subvarieties of \(J_N\) and calculate the degree of the induced polarization on the new part \(J_N^\mathrm {new}\) of the Jacobian.  相似文献   

5.
In this paper we consider functions \(f\) defined on an open set \(U\) of the Euclidean space \(\mathbb{R }^{n+1}\) and with values in the Clifford Algebra \(\mathbb{R }_n\) . Slice monogenic functions \(f: U \subseteq \mathbb{R }^{n+1} \rightarrow \mathbb{R }_n\) belong to the kernel of the global differential operator with non constant coefficients given by \( \mathcal{G }=|{\underline{x}}|^2\frac{\partial }{\partial x_0} \ + \ {\underline{x}} \ \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}. \) Since the operator \(\mathcal{G }\) is not elliptic and there is a degeneracy in \( {\underline{x}}=0\) , its kernel contains also less smooth functions that have to be interpreted as distributions. We study the distributional solutions of the differential equation \(\mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) and some of its variations. In particular, we focus our attention on the solutions of the differential equation \( ({\underline{x}}\frac{\partial }{\partial x_0} \ - E)F(x_0,{\underline{x}})=G(x_0,{\underline{x}}), \) where \(E= \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}\) is the Euler operator, from which we deduce properties of the solutions of the equation \( \mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) .  相似文献   

6.
With each sequence \(\alpha =(\alpha _n)_{n\in \mathbb{N }}\) of pairwise distinct and non-zero points which are such that the canonical product $$\begin{aligned} P_\alpha (z) := \lim _{r\rightarrow \infty }\prod _{|\alpha _n|\le r}\left( 1-\frac{z}{\alpha _n}\right) \end{aligned}$$ converges, the sequence $$\begin{aligned} \alpha ^{\prime } := \bigl (P_\alpha ^{\prime }(\alpha _n)\bigr )_{n\in \mathbb{N }} \end{aligned}$$ is associated. We give conditions on the difference \(\beta -\alpha \) of two sequences which ensure that \(\beta ^{\prime }\) and \(\alpha ^{\prime }\) are comparable in the sense that $$\begin{aligned} \exists \,c,C>0:\quad c|\alpha ^{\prime }_n| \le |\beta ^{\prime }_n| \le C|\alpha ^{\prime }_n|, \quad n\in \mathbb{N }. \end{aligned}$$ The values \(\alpha ^{\prime }_n\) play an important role in various contexts. As a selection of applications we present: an inverse spectral problem, a class of entire functions and a continuation problem.  相似文献   

7.
In this paper we investigate the non-autonomous elliptic equations \(-\Delta u = |x|^{\alpha } u_{+}^{p}\) in \( \mathbb{R }^{N}\) and in \( \mathbb{R }_+^{N}\) with the Dirichlet boundary condition, with \(N \ge 2\) , \(p>1\) and \(\alpha >-2\) . We consider the weak solutions with finite Morse index and obtain some classification results.  相似文献   

8.
In this paper, by means of the idea proposed by Carlet (ACISP 1-15, 2011), differentially 4-uniform permutations with the best known nonlinearity over \({\mathbb{F}_{2^{2m}}}\) are constructed using quadratic APN permutations over \({\mathbb{F}_{2^{2m+1}}}\) . Special constructions are given using the Gold functions. The algebraic degree of the constructions and their compositional inverses is also investigated. One construction and its compositional inverse both have algebraic degree m + 1 over \({\mathbb{F}_2^{2m}}\) .  相似文献   

9.
Let \({\mathcal {C}}\) be a class of finite groups. We study some sufficient conditions for the pro- \({\mathcal {C}}\) completion of an orientable \(\text{ PD }^3\) -pair over \(\mathbb {Z}\) to be an orientable profinite \(\text{ PD }^3\) -pair over \(\mathbb {F}_p\) . More results are proven for the pro- \(p\) completion of \(\text{ PD }^3\) -pairs.  相似文献   

10.
Let \(\Delta _0\) be the Laplace–Beltrami operator on the unit sphere \(\mathbb {S}^{d-1}\) of \({\mathbb R}^d\) . We show that the Hardy–Rellich inequality of the form $$\begin{aligned} \mathop \int \limits _{\mathbb {S}^{d-1}} \left| f (x)\right| ^2 \mathrm{d}{\sigma }(x) \le c_d \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) \left| (-\Delta _0)^{\frac{1}{2}}f(x) \right| ^2 \mathrm{d}{\sigma }(x) \end{aligned}$$ holds for \(d =2\) and \(d \ge 4\) but does not hold for \(d=3\) with any finite constant, and the optimal constant for the inequality is \(c_d = 8/(d-3)^2\) for \(d =2, 4, 5,\) and, under additional restrictions on the function space, for \(d\ge 6\) . This inequality yields an uncertainty principle of the form $$\begin{aligned} \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) |f(x)|^2 \mathrm{d}{\sigma }(x) \mathop \int \limits _{\mathbb {S}^{d-1}}\left| \nabla _0 f(x)\right| ^2 \mathrm{d}{\sigma }(x) \ge c'_d \end{aligned}$$ on the sphere for functions with zero mean and unit norm, which can be used to establish another uncertainty principle without zero mean assumption, both of which appear to be new.  相似文献   

11.
We introduce another notion of bounded logarithmic mean oscillation in the \(N\) -torus and give an equivalent definition in terms of boundedness of multi-parameter paraproducts from the dyadic little \(\mathrm {BMO}\) , \(\mathrm {bmo}^d(\mathbb {T}^N)\) to the dyadic product \(\mathrm {BMO}\) space, \(\mathrm {BMO}^d(\mathbb {T}^N)\) . We also obtain a sufficient condition for the boundedness of the iterated commutators from the subspace of \(\mathrm {bmo}(\mathbb {R}^N)\) consisting of functions with support in \([0,1]^N\) to \(\mathrm {BMO}(\mathbb {R}^N)\) .  相似文献   

12.
New multi-dimensional Wiener amalgam spaces \(W_c(L_p,\ell _\infty )(\mathbb{R }^d)\) are introduced by taking the usual one-dimensional spaces coordinatewise in each dimension. The strong Hardy-Littlewood maximal function is investigated on these spaces. The pointwise convergence in Pringsheim’s sense of the \(\theta \) -summability of multi-dimensional Fourier transforms is studied. It is proved that if the Fourier transform of \(\theta \) is in a suitable Herz space, then the \(\theta \) -means \(\sigma _T^\theta f\) converge to \(f\) a.e. for all \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) . Note that \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset W_c(L_r,\ell _\infty )(\mathbb{R }^d) \supset L_r(\mathbb{R }^d)\) and \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset L_1(\log L)^{d-1}(\mathbb{R }^d)\) , where \(1 . Moreover, \(\sigma _T^\theta f(x)\) converges to \(f(x)\) at each Lebesgue point of \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) .  相似文献   

13.
In this paper, following our previous studies, we investigate the renewal rewards process with respect to the necessity, credibility, chance measure and the expected value in which the random inter-arrival times and random rewards are characterized as weighted fuzzy numbers under \(t\) -norm-based fuzzy operations on \(\mathbb {R}^{p}\) and \(\mathbb {R}^{q}\,\,p,\,q \ge 1,\) respectively. Many versions of \(T\) -related fuzzy renewal rewards theorems are proved by using the law of large numbers for weighted fuzzy variables on \(\mathbb {R}^{p}\) . An application example is provided to illustrate the utility of the results.  相似文献   

14.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

15.
The \(\mathbf{S}^2\!\times \!\mathbf{R}\) geometry can be derived by the direct product of the spherical plane \(\mathbf{S}^2\) and the real line \(\mathbf{R}\) . In (Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 42:235–250, 2001), Farkas has classified and given the complete list of the space groups of \(\mathbf{S}^2\!\times \!\mathbf{R}\) . The \(\mathbf{S}^2\!\times \!\mathbf{R}\) manifolds were classified by Molnár and Farkas in [2] by similarity and diffeomorphism. In Szirmai (Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 52(2):413–430, 2011), we have studied the geodesic balls and their volumes in \(\mathbf{S}^2\!\times \!\mathbf{R}\) space; moreover, we have introduced the notion of geodesic ball packing and its density and have determined the densest geodesic ball packing for generalized Coxeter space groups of \(\mathbf{S}^2\!\times \!\mathbf{R}\) . In this paper, we study the locally optimal ball packings to the \(\mathbf{S}^2\!\times \!\mathbf{R}\) space groups having Coxeter point groups, and at least one of the generators is a glide reflection. We determine the densest simply transitive geodesic ball arrangements for the above space groups; moreover, we compute their optimal densities and radii. The density of the densest packing is \(\approx 0.80407553\) , may be surprising enough in comparison with the Euclidean result \(\frac{\pi }{\sqrt{18}}\approx 0.74048\) . Molnár has shown in (Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry) 38(2):261–288, 1997) that the homogeneous 3-spaces have a unified interpretation in the real projective 3-sphere \(\mathcal PS ^3(\mathbf{V}^4,\varvec{V}_4,\mathbb R )\) . In our work, we shall use this projective model of \(\mathbf{S}^2\!\times \!\mathbf{R}\) geometry.  相似文献   

16.
For an arbitrary prime \(p\) we use partial spreads of \(\mathbb{F }_p^{2m}\) to construct two classes of bent functions from \(\mathbb{F }_p^{2m}\) to \(\mathbb{F }_p\) . Our constructions generalize the classes \(PS^{(-)}\) and \(PS^{(+)}\) of binary bent functions which are due to Dillon.  相似文献   

17.
Let \(\mathrm{R}\) be a real closed field and \(\hbox {D}\subset \mathrm{R}\) an ordered domain. We describe an algorithm that given as input a polynomial \(P \in \hbox {D}[ X_{1} , \ldots ,X_{{ k}} ]\) and a finite set, \(\mathcal {A}= \{ p_{1} , \ldots ,p_{m} \}\) , of points contained in \(V= {\mathrm{{Zer}}} ( P, \mathrm{R}^{{ k}})\) described by real univariate representations, computes a roadmap of \(V\) containing \(\mathcal {A}\) . The complexity of the algorithm, measured by the number of arithmetic operations in \(\hbox {D}\) , is bounded by \(\big ( \sum _{i=1}^{m} D^{O ( \log ^{2} ( k ) )}_{i} +1 \big ) ( k^{\log ( k )} d )^{O ( k\log ^{2} ( k ))}\) , where \(d= \deg ( P )\) and \(D_{i}\) is the degree of the real univariate representation describing the point \(p_{i}\) . The best previous algorithm for this problem had complexity card \(( \mathcal {A} )^{O ( 1 )} d^{O ( k^{3/2} )}\) (Basu et al., ArXiv, 2012), where it is assumed that the degrees of the polynomials appearing in the representations of the points in \(\mathcal {A}\) are bounded by \(d^{O ( k )}\) . As an application of our result we prove that for any real algebraic subset \(V\) of \(\mathbb {R}^{k}\) defined by a polynomial of degree \(d\) , any connected component \(C\) of \(V\) contained in the unit ball, and any two points of \(C\) , there exists a semi-algebraic path connecting them in \(C\) , of length at most \(( k ^{\log (k )} d )^{O ( k\log ( k ) )}\) , consisting of at most \(( k ^{\log (k )} d )^{O ( k\log ( k ) )}\) curve segments of degrees bounded by \(( k ^{\log ( k )} d )^{O ( k \log ( k) )}\) . While it was known previously, by a result of D’Acunto and Kurdyka (Bull Lond Math Soc 38(6):951–965, 2006), that there always exists a path of length \(( O ( d ) )^{k-1}\) connecting two such points, there was no upper bound on the complexity of such a path.  相似文献   

18.
The paper is devoted to the \(d\) -dimensional extension of the classical identity of Stein and Weiss concerning the action of the Hilbert transform on characteristic functions. Let \((R_j)_{j=1}^d\) be the collection of Riesz transforms in \(\mathbb{R }^d\) . For \(1\le p<\infty \) , we determine the least constants \(c_{p,d}, C_{p,d}\) such that $$\begin{aligned} \int _{\mathbb{R }^d} f(x)|R_jf(x)|^p\text{ d }x&\le c_{p,d} ||f||_{L^1(\mathbb{R }^d)},\\ \int _{\mathbb{R }^d} (1-f(x))|R_jf(x)|^p\text{ d }x&\le C_{p,d} ||f||_{L^1(\mathbb{R }^d)} \end{aligned}$$ for any Borel function \(f:\mathbb{R }^d\rightarrow [0,1]\) . The proof rests on probabilistic methods and the construction of appropriate harmonic functions on \([0,1]\times \mathbb{R }\) .  相似文献   

19.
In this paper, we study the abundance of self-avoiding paths of a given length on a supercritical percolation cluster on \(\mathbb{Z }^d\) . More precisely, we count \(Z_N\) , the number of self-avoiding paths of length \(N\) on the infinite cluster starting from the origin (which we condition to be in the cluster). We are interested in estimating the upper growth rate of \(Z_N\) , \(\limsup _{N\rightarrow \infty } Z_N^{1/N}\) , which we call the connective constant of the dilute lattice. After proving that this connective constant is a.s. non-random, we focus on the two-dimensional case and show that for every percolation parameter \(p\in (1/2,1)\) , almost surely, \(Z_N\) grows exponentially slower than its expected value. In other words, we prove that \(\limsup _{N\rightarrow \infty } (Z_N)^{1/N}{<}\lim _{N\rightarrow \infty } \mathbb{E }[Z_N]^{1/N}\) , where the expectation is taken with respect to the percolation process. This result can be considered as a first mathematical attempt to understand the influence of disorder for self-avoiding walks on a (quenched) dilute lattice. Our method, which combines change of measure and coarse graining arguments, does not rely on the specifics of percolation on \(\mathbb{Z }^2\) , so our result can be extended to a large family of two-dimensional models including general self-avoiding walks in a random environment.  相似文献   

20.
We consider (Frobenius) difference equations over \((\mathbb {F}\!_q(s,t), \phi _q)\) where \(\phi _q\) fixes \(t\) and acts on \(\mathbb {F}\!_q(s)\) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group \(\mathcal {G}\) defined over \(\mathbb {F}\!_q\) can be realized as a difference Galois group over \((\mathbb {F} \! _{q^i} (s,t),\phi _{q^i})\) for some \(i \in \mathbb {N}\) . The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori’s theorem which states that \(\mathcal {G}(\mathbb {F}\!_q)\) occurs as a (finite) Galois group over \(\mathbb {F}\!_q(s)\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号