首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-band electron paramagnetic resonance (EPR) studies are carried out on Fe3+ ions doped in ammonium dihydrogen phosphate (ADP) single crystals at room temperature. The crystal field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations. The obtained values of spin Hamiltonian and zero-field parameters of the Fe3+ ion in ADP are: g = 1.994 ± 0.002, |D| = (220 ± 5) × 10?4 cm?1 and a = (640 ± 5) × 10?4 cm?1. On the basis of EPR data, the site symmetry of the Fe3+ ion in the crystal is discussed. The Fe3+ ion enters the lattice substitutionally replacing the NH4 + sites. The optical absorption of the crystal is also studied at room temperature in the wavelength range of 195–925 nm. The energy values of different orbital levels are calculated. The observed bands are assigned as transitions from the 6 A 1g (S) ground state to various excited quartet levels of the Fe3+ ion in a cubic crystalline field. From the observed band positions, Racah interelectronic repulsion parameters (B and C), cubic crystal field splitting parameter (D q ) and Trees correction are calculated. There values are: B = 970, C = 1,923, D q  = 1,380 cm?1 and α = 90 cm?1, respectively. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The zero-field splitting (ZFS) parameters are also determined theoretically using B kq parameters estimated from the superposition model. The values of ZFS parameters thus obtained are |D| = (213 ± 5) × 10?4 cm?1 and |E| = (21 ± 5) × 10?4 cm?1.  相似文献   

2.
X-band electron paramagnetic resonance (EPR) investigations of single crystals of Cr3+-doped dimethylammonium aluminium sulphate hexahydrate are presented from 100 K to room temperature. The crystal undergoes a phase transition at 152 K from the ferroelastic to the ferroelectric phase. The spin-Hamiltonian parameters have been determined for both phases. The spin-Hamiltonian parameters in the ferroelectric phase are:g=1.980±0.003,b 2 0 =(1140±15)·10?4 cm?1,b 2 2 =(214±10)·10?4 cm?1. Remarkable EPR line width changes confirm the order-disorder character of the ferroelectric phase transition on a microscopic level and demonstrate that the dimethylammonium reorientation freezing-out is the prime reason for this transition.  相似文献   

3.
Electron paramagnetic resonance spectra of Cu2+ impurities in cytosine hydrochloride single crystals are observed at liquid nitrogen temperature. Two magnetically equivalent sites for Cu2+ have been observed. The parameters of 63Cu obtained with the fitting of spectra to rhombic symmetry spin Hamiltonian are: g x  = 2.047 ± 0.002, g y  = 2.187 ± 0.002, g z  = 2.390 ± 0.002, A x  = (86 ± 3) × 10?4 cm?1, A y  = (87 ± 3) × 10?4 cm?1, and A z  = (138 ± 3) × 10?4 cm?1. The observed bands in optical spectra of the single crystal recorded at room temperature are assigned to various d–d and charge-transfer transitions. Using both EPR and optical data, the nature of bonding of metal ion with different ligands is discussed.  相似文献   

4.
ABSTRACT

Single-crystal and powder EPR studies of VO2+-doped lithium hydroxylammonium sulphate (LiNH3OHSO4) were carried out at room temperature. The results indicate the presence of two magnetically inequivalent VO2+ sites. The VO2+ ion takes up a substitutional position in the host lattice. The angular variation of EPR spectra in three mutually perpendicular planes were used to determine the spin Hamiltonian parameters, and the values obtained were the following: For Site 1, gx = 2.0249 ± 0.0002, gy = 1.9698 ± 0.0002, gz = 1.9552 ± 0.0002, Ax = (51 ± 2) × 10?4 cm?1, Ay = (93 ± 2) × 10?4 cm?1, and Az = (165 ± 2) × 10?4 cm?1; and for Site 2, gx = 2.0267 ± 0.0002, gy = 1.9743 ± 0.0002, gz = 1.9213 ± 0.0002, Ax = (40 ± 2) × 10?4 cm?1, Ay = (80 ± 2) × 10?4 cm?1, and Az = (155 ± 2) × 10?4 cm?1. The optical absorption spectrum recorded at room temperature shows four bands. From the optical and EPR data, various molecular coefficients are evaluated, and the nature of bonding in the crystal is discussed.  相似文献   

5.
Co2+ binding to the nicotinamide adenine dinucleotide (NAD+) molecule in water solution was studied by electron paramagnetic resonance (EPR) and electron spin echo at low temperatures. Cobalt is coordinated by NAD+ when the metal is in excess only, but even in such conditions, the Co/NAD+ complexes coexist with Co(H2O)6 complexes. EPR spin-Hamiltonian parameters of the Co/NAD+ complex at 6 K are g z  = 2.01, g x  = 2.38, g y  = 3.06, A z  = 94 × 10?4 cm?1, A x  = 33 × 10?4 cm?1 and A y  = 71 × 10?4 cm?1. They indicate the low-spin Co2+ configuration with S = 1/2. Electron spin echo envelope modulation spectroscopy with Fourier transform of the modulated spin echo decay shows a strong coordination by nitrogen atoms and excludes the coordination by phosphate and/or amide groups. Thus, Co2+ ion is coordinated in pseudo-tetrahedral geometry by four nitrogen atoms of adenine rings of two NAD+ molecules.  相似文献   

6.
The EPR zero-field splitting parameters D and g-factors for Cr3+ in α-LiIO3 single crystal, taking into account both the effect of lattice distortion and two Li+ vacancies, have been investigated using a complete diagonalization method (CDM) for 3d3 ions in a trigonal symmetry crystal field. The theoretical results (D=−0.60876 cm−1, g=1.9641, g=1.9682) are in excellent agreement with experimental results (D=−0.6099(3) cm−1g=1.965±0.001, g=1.971±0.002). In addition, Macfarlane's perturbation expressions lead to results almost identical with the CDM for Cr3+ in an α-LiIO3 single crystal.  相似文献   

7.
Electron paramagnetic resonance (EPR) study of Cu2+ ions doped in diammonium hexaaqua magnesium sulphate single crystal over the temperature range of 4.2–320 K is reported. Copper enters the lattice substitutionally and is trapped at two magnetically equivalent sites. The spin Hamiltonian parameters are evaluated at 320, 300, 77, and 4.2 K. The angular variations of the resonance lines in three mutually perpendicular planes ab, bc* and c*a are used to determine principal g and A values. The observed spectra are fitted to a spin Hamiltonian of rhombic symmetry with parameters of Cu2+ at 77 and 4.2 K: g xx  = 2.089, g yy  = 2.112, g zz  = 2.437 (±0.002) and A xx  = 38, A yy  = 14, A zz  = 110 (±2) × 10?4 cm?1. The ground state wave function of Cu2+ ion in this lattice is determined. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption spectra of the crystal are also recorded at room temperature. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. By correlating the optical and EPR data, the nature of bonding in the complex is discussed. The temperature dependence of the g values is explained to conclude the occurrence of both static and dynamic Jahn–Teller effects over the temperature range of investigation.  相似文献   

8.
The X-band EPR spectrum of Mn2+ in Sn2P2S6 was studied in the temperature rangeT=223–363 K. At room temperature the spin-Hamiltonian constants areg=2.00±0.01,B 2 0 =(163±3)·10?4 cm?1,B 2 2 =(159±3)·10?4 cm?1,A=?(75±1)·10?4 cm?1. The effect of the invariance in temperature of the resonance magnetic fields in the narrow temperature rangeT=337–340 K and the model of the paramagnetic centre are discussed. According to EPR data a phase transition occurs atT=337 K. This transition from the paraelectric phase to the ferroelectric one is accompanied by a dramatic change in value of the spin-Hamiltonian constantB 2 0 .  相似文献   

9.
Electron paramagnetic resonance has been observed for Dy3+ in ZnSe and Tm3+ in CdS. For Dy3+ doped ZnSe, an isotropic spectrum was observed having well resolved hyperfine lines due to 161Dy and 163Dy. The g value obtained was 6.577 ± 0.002 and 161A was 191 ± 1 × 104 cm?1 and 163A was 265 ± 3 × 10?4 cm?1. The agreement of the observed g value to g6) = 6.667 and the point-charge calculations suggest that Dy3+ occupies an interstitial (II) site with no local charge compensation. For Tm3+ doped in hexagonal CdS, an axial spectrum consistent with g = 0, g = 10.722 ± 0.007, D = 2.57 GHz (crystal field splitting) and 169A = 1207 ± 5 × 10?4cm?1. The large g value indicates that the Tm ion exits in the trivalent state. This is in reasonable agreement with previous reports of the non-Kramer's state of Tm3+.  相似文献   

10.
EPR study of Cr3+-doped tetramethyl cadmium chloride (TMCC) single crystals is carried out at room temperature. The crystal field and spin-Hamiltonian parameters are evaluated from the resonance line positions of different lines observed in the EPR spectra. The g and D parameter values are found to be g=1.9741±0.0002 and D=553±2×10−4 cm−1, respectively. EPR data indicate that the site symmetry of Cr3+ ion in the crystal is distorted octahedron. Cr3+ ions enter the lattice substitutionally replacing Cd2+ sites and bind to the neighboring extra Cd vacancies necessary for charge compensation. The optical absorption spectra are measured in 195–925 nm wavelength range at room temperature. From optical study the energy values of different orbital levels are estimated. Further, the bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained to be B=722, C=2845, Dq=2043 cm−1, h=1.015 and k=0.21.  相似文献   

11.
ESR studies were conducted on Cu2+-doped bis-(5,5′-diethylbarbiturato)bis picoline Zn(II). Two Cu2+ lattice sites, Cu2+(I) and Cu2+(II), were identified. These sites exhibit two sets of four hyperfine lines in all directions. The g factor and hyperfine splitting were calculated from ESR absorption spectra: gx ?=?2.0201?±?0.002, gy ?=?2.0900?±?0.002, gz ?=?2.1634?±?0.002, Ax ?=?(30?±?2)?×?10?4?cm?1, Ay ?=?(40?±?2)?×?10?4?cm?1 and Az ?=?(154?±?2)?×?10?4?cm?1. It was found that Cu2+ enters the lattice substitutionally. The ground-state wavefunction of the Cu2+ ion in this lattice was determined from the spin Hamiltonian constants obtained from the ESR studies. With the help of an optical absorption study, the nature of the bonding in the complex is also discussed.  相似文献   

12.
The optical band positions and spin-Hamiltonian parameters (g factors gg? and zero-field splitting D) for the trigonal Cr3+ centers in Y2Ti2O7 crystal are calculated from the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model. In the calculations, the contributions to spectral data from both the spin-orbit parameter of central dn ion and that of ligand ion are considered and the crystal field parameters used are estimated from the superposition model. The calculated results are in reasonable agreement with the experimental values. The defect structures of Cr3+ center is suggested.  相似文献   

13.
Optical absorption and ESR spectra of Bi12GeO20 doped with Cr were measured before and after illumination with visible light. It was found that Cr4+ ions in tetrahedral position are responsible for light induced ESR and optical spectra. The g-factor of the center is 1.945 ± 0.002. Crystal field parameters for the Cr4+ center are Dq = 820 cm?1 and B = 429cm?1. The photochromic effect is explained in terms of a Cr5+?Cr4+ charge transfer process.  相似文献   

14.
Attempts were made to grow CeO2 and ThO2 single crystals doped with transition metal ions. Only Fe3+ and Mn2+ could be detected by the EPR technique. The EPR spectrum of Fe3+ in CeO2 exhibits the well-known fine structure in cubic fields. The parameters areg=2.0044(1) anda=15.6(1)·10?4 cm?1. The hyperfine constantA for57Fe in hexahedral coordination was found to be 8.9(1)·10?4 cm?1. The EPR spectrum of Mn2+ in CeO2 reveals two cubic Mn2+ centers. The parameters for center 1 areg=1.9999(1) andA=86.9(1)·10?4 cm?1 and for center 2g=1.9984(1) andA=87.0(1)·10?4 cm?1. Heating the Mn doped CeO2 samples in hydrogen, the Mn2+ centers transform from cubic into trigonal centers with approximate values ofg=1.9988(2),A=84.5(6)·10?4 cm?1 andD=203(1)·10?4 cm?1. The two observed Mn2+ centers in ThO2 exhibita priori axial symmetry with approximate values ofg=2.0006(2),A=88.9(4)·10?4 cm?1 andD=33(3)·10?4 cm?1.  相似文献   

15.
The spin-Hamiltonian parameters (g factors g//, g and zero-field splitting D) of the trigonal Cr3+ centers in Cr3+-doped ABO3 (A = Sc, In, Lu) borate crystals are computed from both the complete diagonalization (of energy matrix) method and also the perturbation method based on the two-spin–orbit-parameter model, where the contributions to spin-Hamiltonian parameters due to both the spin–orbit parameter of central d n ion and that of ligands via covalence effect are considered. The calculated results are compatible with those available in experiments. The defect structures of the trigonal (CrO6)9? octahedral centers are also evaluated from the calculations. It is found that the trigonal (MO6)9? octahedra change from the elongation in the host crystals to the compression in the impurity centers because of the large size and nature mismatch substitution in these Cr3+-doped ABO3 crystals. The results are discussed.  相似文献   

16.
EPR spectra of Cr3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: gx=1.9257±0.0002, gy=1.9720±0.0002, gz=2.0102±0.0002, |D|=313±2 (×10−4) cm−1 and |E|=101±2 (×10−4) cm−1. From the results of EPR study, the site symmetry of Cr3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (Dq) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.  相似文献   

17.
Calcium sulfide powder containing iron as an impurity was irradiated with 580, 366 or 254 nm light at 77 K. Irradiation enhanced a broad (16 G peak-to-trough) electron paramagnetic resonance (EPR) signal at g = 2.017 and caused six sharp (~1 G) lines to appear in the X-band EPR spectrum at 347, 529, 956, 1963, 3547 and 5376 G. Enrichment of CaS with Fe2+ produced samples with similar photochemistry. It is proposed that irradiation causes the reaction Fe2+ + trap → Fe3+ + trap?, whose products give rise to six sharp EPR lines assigned to Fe3+ and a broad line associated with trap?. Both hyperfine splitting by 57Fe (13 G) and superhyperfine splitting by 33S (11.4 G) are observed in the six line spectrum. The environment of the photo-generated Fe3+ has less than octahedral symmetry. V2+ was observed at octahedral sites in unirradiated CaS for the first time, and is characterized by the EPR parameters g = 1.961 and A (hyperfine coupling) = 74.6 × 10?4 cm?1. EPR signals due to Mn2+ and Cr3+ at octahedral sites and Fe3+ at a low symmetry site were also observed in unirradiated CaS.  相似文献   

18.
This paper reports on an EPR study of LaAl1?x NixO3 solid solutions with x≤0.12 made in the 4.2-to 300-K temperature range. In the X range, the broadening of the single EPR line with g eff=2.148 was observed at temperatures below ~40 K. In the Q range, a slightly anisotropic EPR line with g =2.145±0.002 and g =2.154±0.002 transforms to a rhombic-symmetry spectrum with g 1=2.183±0.002, g 2=2.143±0.002, and g 3=2.118±0.002. It is shown that the observed low-temperature effects are due to the lowered symmetry of the complex under the combined action of the tetragonal Jahn-Teller distortions and of the trigonal component of the crystal field.  相似文献   

19.
The red emitting Cr3+ activated α-Al2O3 powder phosphor has been prepared by easy combustion reactions from mixed metal nitrate reactants and urea with ignition temperatures of 500 °C. The as-synthesized powder was characterized by X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared techniques. The X-ray diffraction pattern reveals that the phosphor crystallized in the hexagonal α-Al2O3 phase directly from the combustion reaction. The EPR spectrum exhibits an intense resonance signal with effective g value at g=3.33 along with a few weak resonance signals with effective g values at g=13.7, 2.34, 1.95, 1.49, and 1.26. The spin concentration (N) and its paramagnetic susceptibility (χ) have been evaluated. The excitation spectrum consists of two broad intense bands at 415 nm and 555 nm and are assigned to 4A2g (F)→4T1g (F) and 4A2g (F)→4T2g (F) transitions, respectively. The intense fluorescence peak around 691 nm is attributed to 2E g 4A2g transition of Cr3+ ion. By correlating EPR and optical data, the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) have been evaluated and discussed. The EPR and optical studies reveal that Cr3+ ions are occupying in Al3+ sites in octahedral coordination.  相似文献   

20.
The electron paramagnetic resonance (EPR) study of the Cr3+-doped ammonium oxalate monohydrate (AOM) single crystal is done at room temperature. Two magnetically inequivalent sites for chromium are observed. The hyperfine structure for Cr53 isotope is also obtained. The spin Hamiltonian parameters are evaluated as: D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9820±0.0002, A=(161±2)×10−4 cm−1 for site I and D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9791±0.0002, A=(160±2)×10−4 cm−1 for site II, respectively. On the basis of EPR data the site symmetry of Cr3+ doped single crystal is discussed. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The values of different parameters are B=803, C=3531, Dq=2208 cm−1, h=0.59 and k=0.21, where B and C are Racah parameters, Dq is crystal field parameter and h and k are nephelauxetic parameters, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号