首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A nanosilica powder was obtained by thermal treatment of rice husk ash using the sol–gel method without adding any extra surfactant, and was characterized by several techniques. Fourier transform infrared measurements revealed the similarity of the absorption curves of both standard nanosilica and synthesized nanosilica. From the nitrogen adsorption–desorption analysis followed that the nanosilica showed very high surface area of 653 m2/g, total pore volume of 0.64647 mL/g, and narrow pore radius of about 1.98 nm. Scanning electron microscopy of the nanosilica sample dried at 120 °C showed separated particles, while the particles of the sample sintered at 700 °C were aggregated. The analysis of transmission electron microscopy (TEM) micrographs and showed that about 69 % of particles had their sizes in the range of 20–25 nm. X-ray diffraction measurements showed the amorphous nature of the synthesized silica. Applying the Debye–Scherrer formula provided the value of the mean crystallite size around 26 nm which agreed with the one determined from TEM. The purity of the prepared nanosilica was higher than 95 % silica which was confirmed by means of energy dispersive X-ray analysis.  相似文献   

2.
《Comptes Rendus Chimie》2016,19(10):1247-1253
High surface area mesoporous silica based catalysts have been prepared by a simple hydrolysis/sol–gel process without using any organic template and hydrothermal treatment. A controlled hydrolysis of ethyl silicate-40, an industrial bulk chemical, as a silica precursor, resulted in the formation of very high surface area (719 m2/g) mesoporous (pore size 67 Å and pore volume 1.19 cc/g) silica. The formation of mesoporous silica has been correlated with the polymeric nature of the ethyl silicate-40 silica precursor which on hydrolysis and further condensation forms long chain silica species which hinders the formation of a close condensed structure thus creating larger pores resulting in the formation of high surface mesoporous silica. Ethyl silicate-40 was used further for preparing a solid acid catalyst by supporting molybdenum oxide nanoparticles on mesoporous silica by a simple hydrolysis sol–gel synthesis procedure. The catalysts showed very high acidity as determined by NH3-TPD with the presence of Lewis as well as Brønsted acidity. These catalysts showed very high catalytic activity for esterification; a typical acid catalyzed organic transformation of various mono- and di-carboxylic acids with a range of alcohols. The in situ formed silicomolybdic acid heteropoly-anion species during the catalytic reactions were found to be catalytically active species for these reactions. Ethyl silicate-40, an industrial bulk silica precursor, has shown a good potential for its use as a silica precursor for the preparation of mesoporous silica based heterogeneous catalysts on a larger scale at a lower cost.  相似文献   

3.
The magnetic barium ferrite (BaFe12O19) hollow fibers with a high specific surface area about 22–38 m2 g?1, diameters around 1 μm and a ratio of the hollow diameter to the fiber diameter estimated about 1/2–2/3 have been prepared by the gel-precursor transformation process. The precursor and resulting ferrite hollow fibers were analyzed by thermo-gravimetric and differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The specific surface area was measured by the Brunauer–Emmett–Teller method. The gel formed at pH 5.5 has a good spinnability. A pure barium ferrite phase is formed after calcined at 750 °C for 2 h and fabricated of nanograins about 38 nm with a hexagonal plate-like morphology, which are increased to about 72 nm with the calcination temperature increased up to 1050 °C. The barium ferrite hollow fibers obtained at 750 °C for 2 h have a specific surface area 38.1 m2 g?1 and average pore size 6.5 nm and then the specific surface area and average pore size show a reduction tendency with the calcination temperature increasing from 750 to 1050 °C owing to the particle growth and fiber densification. These barium ferrite hollow fibers exhibit typical hard-magnetic materials characteristics and the formation mechanism for hollow structures is discussed.  相似文献   

4.
Alumina–titania mixed oxide nanocatalysts with molar ratios = 1:0.5, 1:1, 1:2, 1:5 have been synthesized by adopting a hybrid sol–gel route using boehmite sol as the precursor for alumina and titanium isopropoxide as the precursor for titania. The thermal properties, XRD phase analysis, specific surface area, adsorption isotherms and pore size details along with temperature programmed desorption of ammonia are presented. A specific surface area as high as 291 m2/g is observed for 1:5 Al2O3/TiO2 composition calcined at 400 °C, but the same composition when calcined at 1,000 °C, resulted in a surface area of 4 m2/g, while 1:0.5 composition shows a specific surface area of 41 m2/g at 1,000 °C. Temperature programmed desorption (of ammonia) results show more acidic nature for the titania rich mixed oxide compositions. Transmission electron microscopy of low and high titania content samples calcined at 400 °C, shows homogeneous distribution of phases in the nano range. In the mixed oxide, the particle size ranges between 10–20 nm depending on titania content. The detailed porosity data analysis contributes very much in designing alumina–titania mixed oxide nanocatalysts.  相似文献   

5.
Pure maghemite nanopowders made up of nanocrystals with average size of 19 nm was prepared by a simple sol–gel self combustion process. The gel pH and the primer temperature turned out the key parameters for the obtaining of the maghemite phase, that often is accompanied by the most thermodynamically stable hematite. Pure maghemite was achieved only with a gel pH value of 7 and with a primer temperature between 290 and 325 °C. XRD and IR pointed out the formation of maghemite with tetragonal structure and HRTEM indicated the high degree of crystallinity of the powder. Mossbauer measurements allowed to confirm the presence of maghemite phase with Fe(octa):Fe(tetra) ratio of 1.62 which is very close to the theoretical value and the presence spin canting strongly dependent on applied magnetic field. This picture is confirmed by dc magnetic measurements.  相似文献   

6.
Journal of Thermal Analysis and Calorimetry - Organic–inorganic hybrid composites have received much attention of scientists in the recent years due to the notable improvement of thermal...  相似文献   

7.
8.
This work addresses the novel non-aqueous sol–gel process preparation of carbon-supported nickel nanoparticles. In the sol–gel process, ethanol, nickel nitrate or nickel (П) acetylacetonate, and citric acid were used as solvent, source of metallic element, and chelating agent, respectively. Hexadecylamine (HDA), oleic acid and oleylamine were used as surfactants. The calcination process was performed under protecting Ar or N2 flowing. Carbon supported nickel nanoparticles can be prepared by this sol–gel process. Moreover, no grain growth occurs in a temperature range of 200 K, meaning that the grain size of the nickel nanoparticles can be controlled in this sol–gel process. The nickel nanoparticles can display typical superparamagnetic behavior at room temperature when HDA has been used. This novel method is expected to have wide applications in the field of metallic nanoparticles.  相似文献   

9.
Durable superhydrophobic surface on cotton fabrics has been successfully prepared by sol–gel method. Cellulose fabric was first coated with silica sol prepared with water glass and citric acid as the acidic catalyst. The silica coated fabric was then padded with hydrolyzed hexadecyltrimethoxysilane afterwards obtaining low surface energy. Water contact angle and hydrostatic pressure were used to characterize superhydrophobicity and washing durability. Scanning electron microscopy was used to characterize the surface morphology changes after certain washing times. All results showed good durable hydrophobicity on cellulose fabrics. In addition, the influence of citric acid and sodium hypophosphite (NaH2PO2) on the durability of hydrophobicity was also investigated. The durability of treated cotton improved with the increase of concentration of citric acid in the presence of NaH2PO2. It could be concluded that citric acid acted as multi-functional heterogeneous grafting chemicals to improve washing durability of hydrophobicity by forming the ester bonds between cotton fabric and silica sol and improved the durability of hydrophobicity.  相似文献   

10.
A comparative study on the physical and optical properties of silica nanoparticles prepared by sol–gel has been carried out. Post-modification of as-synthesized silica nanoparticles produced organo-functionalized silica nanoparticles slightly increased in size (~20%) and relatively high aggregation. However, in situ method produced sixfold bigger functionalized particles with good dispersion and less aggregation. Higher organic content was observed for in situ modified nanosilica, leading to a higher surface hydrophobicity that improved compatibility and dispersion in preparation of silica-polymer nanocomposite. Furthermore, in situ and post-modified nanosilica demonstrated a distinct optical activity, photoluminescence and UV compared to the unmodified nanoparticles.  相似文献   

11.
Nickel and silver particles were prepared by using sol–gel auto-combustion method under N2 atmosphere where lactic acid was applied as chelating agent. The synthesis of nickel particles was carried out at various pH conditions (2–7), resulting in the face-centered-cubic or hexagonal-close-packed crystalline nickel phase. The morphology and structure of synthesized nickel particles and silver nanoparticles were characterized by X-ray diffraction, transmission electron microscope, energy dispersive X-Ray spectroscopy and differential scanning calorimetry-thermogravimetric analysis. The results show that the spherical Ag nanoparticles with diameters in the range of 18–27 nm and narrow size distribution can be obtained by this sol–gel process.  相似文献   

12.
Copper chromium oxide (CuCrO2) nanoparticles were synthesized by sol–gel method. The effect of annealing temperature, duration of heat treatment and metallic ion concentration in precursor solution on the structural properties of the nanoparticles was investigated. The delafossite structure of CuCrO2 powder was confirmed by X-ray diffractometer. It was found that the crystallite sizes as well as the size of the nanoparticles increased with annealing temperature and duration of heat treatment but decreased with metallic ion concentration. Nanoparticles’ size was obtained using particle size analyzer. The synthesized CuCrO2 nanoparticles with 0.7 M metallic ion concentration have the lowest crystallite and particle sizes with a narrow size distribution in the range of 13.5–15.6 nm. In the presence of this metallic ion concentration, we could also produce single crystal CuCrO2 nanoparticles. Moreover, the CuCrO2 nanoparticles exhibit a large optical band gap that increases with metallic ion concentration. The optical band gap of the nanoparticles fabricated with 0.7 M metallic ion concentration in precursor solution is about 3.99 eV.  相似文献   

13.
Liu  Yueyu  Yin  Zhili  Wang  Ziqing  Mou  Ronglin  Wei  Zhong 《Research on Chemical Intermediates》2022,48(6):2557-2573

High surface area ZrO2–KOH sample was prepared and used the catalyst for the synthesis of glycerol carbonate (GC) from dimethyl carbonate (DMC) and glycerol. The structure properties of ZrO2–KOH were characterized by XRD, BET, CO2-TPD, XPS, and ICP-OES. It was found that the strong basicity of ZrO2–KOH might be attributed to the oxygen vacancies as well as the big surface area. Experiments were developed to evaluate the effects of catalysis loading, proportion of reactants, temperature and reaction time on the conversion of glycerol to GC. The consequences showed that ZrO2–KOH was a highly efficient basic catalyst for synthesis of GC from glycerol. The catalytic performance of ZrO2–KOH is much better than that of ZrO2–KOH–CP, ZrO2–NH4OH, and some reported heterogeneous catalysts. And the higher performance of ZrO2–KOH was ascribed to the strong basicity. 99.43% conversion was obtained in a particular situation of catalyst/glycerol weight ratio of 3 wt%, DMC/glycerol molar ratio of 3:1, reaction temperature of 80 °C, and reaction time of 2 h. The plausible reaction mechanism for the transesterification on the strong basic active sites was discussed.

  相似文献   

14.
Nanosheet AlOOH and silica spheres composite thin film was deposited onto glass by sol–gel dip-coating method through hydrolysis of boiling water immersion. A silica sol and an alumina sol are employed in dipping process for the preparation of hierarchical nanostructures thin film. The morphology and structure of the films were characterized using field emission scanning electron microscopy and X-ray diffraction. The super-hydrophobicity with high adhesion forces can be attributed to both the rough multi-scale structural coating and surface enrichment of low surface energy with the chemical vapor deposition of 1H,1H,2H,2H-perfluorodecyltriethoxysilane.  相似文献   

15.
Herein, addition reaction occurred between glycidol and partially hydrolyzed Ti4+ complexes provides a opportunity to obtain dry anatase nanopowder with high redispersity in water. This property is considered to be originated from the two OH groups located in the two ends of glycidol resulted chlorinated propandiol molecules. In aqueous solution, the two OH groups are respectively connected with particle surface and external free water by the formation of hydrogen bonds, resulting in high water redispersity of nanoparticles. Due to the much less amount of chlorinated propandiol molecules than adsorbed molecule water on particle, the wide space between organic molecules facilitates the mutual physical surface touch of individual particles to form hydrogen bond between them. A novel property is then obtained for surface modified titania nanoparticles, which is the gelation of redispered nanoparticles in aqueous solution.  相似文献   

16.
The sol–gel method for the mullite synthesis is reviewed, with particular emphasis on the characterization of monophasic and diphasic gels at low, intermediate and high temperatures and the factors that influence the hydrolysis and condensation rate of the sol–gel process, which in turn determine the properties of the final material. A wide range of studies about mullite precursors synthesized via sol–gel is discussed here.  相似文献   

17.
Nano sized β-SiC particles were synthesized from sol–gel process. Mono dispersed β-SiC nano particles with semi spherical morphology were obtained by employing APC as a dispersant agent and adjusting pH in the range of 2.5–4. Phenolic resin and TEOS were employed as precursors and heat treatment was conducted up to 1500 °C. Different techniques such as XRD, DTA, FTIR, PSA, SEM and TEM were used to characterize the formation of β-SiC. The (Si–O-C) bonds were formed by hydrolysis and condensation reactions in the gel while the nucleation of crystalline β-SiC was found to be initiated at 1400 °C. The primary particles in the sol were found to be (< 10 nm) while the size distribution in the final product was recorded in the range of 30–50 nm.  相似文献   

18.
Poly(chloropropyl-methyl)silsesquioxanes (PCMSQ) were prepared using the base catalyzed sol–gel processing on methyltrimethoxysilane (MTMS) and 3-chloropropyltriethoxysilane (CPTES) with 5:5, 6:4, and 7:3 molar ratios in methanol and water. The PCMSQ with 6:4 molar ratio of MTMS:CPTES, which has the maximum yield, according to the elemental analysis, was chosen and some chlorine atoms of the chloropropyl groups were changed to different amines by refluxing it with ethylenediamine (en), diethylenetriamine (dien), ortho-phenylenediamine (opda), and 2-imidazolidinethion (imt). The amine grafted PCMSQ were then used to support MoO2(acac)2 complex and dien grafted PCMSQ with higher metal content was applied to the epoxidation of cis-cyclooctene with TBHP. The product yields were studied by gas liquid chromatography and the catalytic procedure was optimized for the parameters involved such as the solvent and oxidant. The catalytic activity of this catalyst also was investigated toward epoxidation of some other alkenes. It was also applied to check its reuse ability.
In this research, micro-spherical poly-organo-silsesquioxane was prepared using the base catalyzed sol–gel processing of methyltrimethoxysilane and 3-chloropropyltriethoxysilane with different molar ratios. The sample which has the maximum yield, was used to graft MoO2(acac)2 and for the successful anchoring, some chlorine atoms of the chloropropyl side groups were changed to amines. Then the prepared catalyst with higher molybdenum content was used for the epoxidation of cis-cyclooctene and some other alkenes with TBHP.
  相似文献   

19.
Nickel aluminates were prepared by sol–gel and impregnation methods and calcined at 1100 °C. The sol–gel made samples were prepared with different amounts of nickel (Ni/Al molar ratio equal to 0, 0.25, 0.5, and 0.75) and aging times (24 and 48 h). The samples were characterized by X-ray diffraction, induced couple plasma, nitrogen physisorption, transmission and scanning electron microscopy, and ammonia temperature programmed desorption (NH3-TPD). In the sol–gel made samples, only the NiAl2O4 structure of nickel aluminate was defined, while for impregnation, NiAl10O16 was formed as well. The sol–gel made samples had low specific surface areas (7.7–12.4 m2/g), but a sample prepared by impregnation method had higher specific surface area (67.2 m2/g). The surface acidity density decreased by increasing the amount of nickel and was the lowest for impregnation method.  相似文献   

20.
We show here how luminescence of fluorescent dyes and lanthanide complexes in sol–gel matrix can be intensified as a result of interaction of the species with silver nanoparticles. Preparation of silver nanoparticles in sol–gel composite precursor is outlined and their structural characterization are presented. Zirconia-glymo and Glymo-polyurethane-silica were used as host matrices for silver nanoparticles and the fluorescence species. The intensification of fluorescence was demonstrated by steady state spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号