首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Large-eddy simulations (LES) are used to investigate the modifications of wake dynamics and turbulence characteristics behind a circular cylinder placed near a wall for varying gap-to-diameter (G/D) ratios (where G signifies the gap between the wall and the cylinder, and D the cylinder diameter). The three-dimensional (3-D), time-dependent, incompressible Navier–Stokes equations with a dynamic subgrid-scale model are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed boundary (IB) method is employed to impose the no-slip boundary condition on the cylinder surface. Flow visualizations along with turbulence statistics are presented to gain insight into the flow structures that are due to interaction between the shear layers and the approaching boundary layer. Apart from the vortex shedding mechanism, the paper illustrates the physics involving the shear layer transition, stretching, breakdown and turbulence generation, either qualitatively or quantitatively, in the presence of a wall for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U).  相似文献   

2.
Two dimensional flow over a circular cylinder with an upstream control rod of same diameter is simulated in unbound condition and in wall bounded conditions. The cylinders are placed at various heights from the wall and the inter-distance between cylinders is also varied. The control rod is subjected to different rotation rates. It is found that, in unbound condition, rotating the control rod decreases the critical pitch length (S/Dcr) and increases the drag and Strouhal number of the main cylinder. In presence of plane wall, the shielding provided by the separated shear layers from the control rod in cavity regime is deteriorated due to deflection of shear layers which results in higher drag and large fluctuation of lift coefficient. However, in wake impingement regime, the binary vortices from the control rod are weakened due to diffusion of vorticity and hence, the main cylinder experiences a lower drag and small lift fluctuations than that of unbound condition. The critical height of vortex suppression (H/Dcr) is higher in cavity regime than that of wake impingement regime due to the single extended-bluff body like configuration. The rotation of control rod energizes the wall boundary layer and increases the critical height of vortex suppression. Increasing the rotational rate of control rod decreases the drag force and reduces the amplitude of lift fluctuation. Analysis of the wall shear stress distribution reveals that it suffers a sudden drop at moderate height where the normal Karman vortex shedding changes to irregular shedding consisting of single row of negative vortices. Modal structures obtained from dynamic mode decomposition (DMD) reveal that the flow structures behind the main cylinder are suppressed due to wall and the flow is dominated by the wake of control rod.  相似文献   

3.
The steady mixed convection boundary layer flow over a horizontal circular cylinder, generated by Newtonian heating in which the heat transfer from the surface is proportional to the local surface temperature, is considered in this study. The governing boundary layer equations are first transformed into a system of non-dimensional equations via the non-dimensional variables, and then into non-similar equations before they are solved numerically using a numerical scheme known as the Keller-box method. Numerical solutions are obtained for the skin friction coefficient Re 1/2 C f and the local wall temperature θ w (x) as well as the velocity and temperature profiles with two parameters, namely the mixed convection parameter λ and the Prandtl number Pr.  相似文献   

4.
Turbulent flow through a duct of square cross-section gives rise to off-axis secondary flows, which are known to transfer momentum between fluid layers thereby flattening the velocity profile. The aim of this study is to investigate the role of the secondary flows in the transport and dispersion of particles suspended in a turbulent square duct flow. We have numerically simulated a flow through a square duct having a Reynolds number of Reτ = 300 through discretization of the Navier–Stokes equations, and followed the trajectories of a large number of passive tracers and finite-inertia particles under a one-way coupling assumption. Snapshots of particle locations and statistics of single-particle and particle pair dispersion were analyzed. It was found that lateral mixing is enhanced for passive tracers and low-inertia particles due to the lateral advective transport that is absent in straight pipe and channels flows. Higher inertia particles accumulate close to the wall, and thus tend to mix more efficiently in the streamwise direction since a large number of the particles spend more time in a region where the mean fluid velocity is small compared to the bulk. Passive tracers tend to remain within the secondary swirling flows, circulating between the core and boundary of the duct.  相似文献   

5.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

6.
The axi-symmetric laminar boundary layers, formed on the conical surface and under the cyclone roof, have been calculated by Pohlhausen's method assuming that the tangential velocity outside boundary layers varies as r ?n up to the point where boundary layers meet solid body rotating liquid column and thereafter as r—as found in experiments—where r is the distance from the axis of the cone and n is flow pattern constant. Point of interaction of the boundary layers with solid body rotating liquid column has been taken from experimental results obtained with a hydrocyclone having vortex finder diameter greater than that of apex opening. Results show that there is no possibility of separation of boundary layers from cyclone wall.  相似文献   

7.
Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan–Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular.For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is greater than that in the cross-flow direction. They are 14 and 26 for KC=10 and 20, respectively. Maximum amplitude occurs at the boundary value of the reduced velocity between in-phase regime and anti-phase regime in both the x- and the y-directions.  相似文献   

8.
Generating an adverse pressure gradient (APG), using a rotating cylinder in the proximity of a plane wall under a laminar freestream flow, is studied numerically in this work. The magnitude of the generated APG is a function of the gap, G, between the cylinder and the wall, and the rotational speed of the cylinder, Ω. The flow in such a configuration is characterized by periodic transient vortex shedding at high Reynolds number. A numerical model for the computation of the transient flow for this configuration is developed using the ANSYS CFD simulation tool. The model is validated against published experimental and numerical data for similar flow configurations and excellent agreement is observed. A parametric study is carried out for different combinations of G and Ω for two different Reynolds numbers of 200 and 1000 to examine the development of the resulting separation bubble due to the generated APG. The mechanism of the boundary layer separation over the plane wall and the corresponding wake dynamics is investigated. Results are presented in terms of the distribution of the pressure coefficient as well as skin friction coefficient along the wall and flow patterns around and downstream of the cylinder in the proximity of the wall. The results of these computations confirm that using a rotating cylinder over a plane wall in a freestream flow is an effective technique to generate a controlled range of adverse pressure gradients.  相似文献   

9.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

10.
The turbulent shear flow around a rotating cylinder in a quiescent flow is a simple case of a rotating turbulent flow field, where centrifugal force works. Two different power-law mean-velocity distributions exist in this flow field. One is U∝1/r and the other is U∝1/r2, where r is a distance from the surface of a cylinder. The behavior of chaos and fractal properties for this complex flow field are investigated. The former concerns the dynamic property in fluid flow and the latter is useful to characterize complex flow patterns or the distribution of turbulence quantities. From the instantaneous velocity signal, we defined the iso-velocity set, and its fractal property was investigated both in the U∝1/r and U∝1/r2 region. The instantaneous Reynolds stress is found to be a key factor in this fractal property as conceived for the flat plate boundary layer. The intermittency chaos was applied to investigate the turbulent and non-turbulent distribution in the outer region. A simple one-dimensional model could be useful to identify turbulent and non-turbulent distributions even in this complex flow.  相似文献   

11.
This study developed a two-dimensional generalized vortex method to analyze the shedding of vortices and the hydrodynamic forces resulting from a solitary wave passing over a submerged circular cylinder placed near a flat seabed. Numerical results for validation are compared with other numerical and experimental results, and satisfactory agreement is found. A series of simulations were performed to study the effects of gap-to-diameter ratio and incident wave height on vorticity pattern as well as the forces exerted on the cylinder. The range of the heights of incident waves is from 0.3h to 0.7h, where h is the still water depth. The range of the gap-to-diameter ratios is from 0.1 to 0.8. The results indicate that the flow pattern and the pressure distribution change significantly because of the close proximity of the seabed where the vorticity flux on the seabed-side surface of the cylinder is suppressed. Placing the cylinder nearer the seabed increases the drag and the positive lift on the cylinder. When the gap-to-diameter ratio increases, the pattern of vortices changes because of the interaction between the main recirculation zone and the shear layers separated from the gap. The maxima of drag, lift and total force increase linearly with the height of the incident wave.  相似文献   

12.
Three‐dimensional direct numerical simulation results of flow past a circular cylinder are influenced by numerical aspects, for example the spanwise domain length and the lateral boundary condition adopted for the simulation. It is found that inappropriate numerical set‐up, which restricts the development of intrinsic wake structure, leads to an over‐prediction of the onset point of the secondary wake instability (Recr). A best practice of the numerical set‐up is presented for the accurate prediction of Recr by direct numerical simulation while minimizing the computational cost. The cylinder span length should be chosen on the basis of the intrinsic wavelength of the wake structure to be simulated, whereas a long span length is not necessary. For the wake transitions above Recr, because the wake structures no longer follow particular wavelengths but become disordered and chaotic, a span length of more than 10 cylinder diameters (approximately three times the intrinsic wavelength) is recommended for the simulations to obtain wake structures and hydrodynamic forces that are not strongly restricted by the numerical set‐up. The performances of the periodic and symmetry lateral boundary conditions are compared and discussed. The symmetry boundary condition is recommended for predicting Recr, while the periodic boundary condition is recommended for simulating the wake structures above Recr. The general conclusions drawn through a circular cylinder are expected to be applicable to other bluff body configurations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Double-diffusive convection due to a cylindrical source submerged in a salt-stratified solution is numerically investigated in this study. For proper simulation of the vortex generated around the cylinder, a computational domain with irregular shape is employed. Flow conditions depend strongly on the thermal Rayleigh number, Ra T , and the buoyancy ratio, R ρ. There are two types of onset of instability existing in the flow field. Both types are due to either the interaction of the upward temperature gradient and downward salinity gradient or the interaction of the lateral temperature gradient and downward salinity gradient. The onset of layer instability due to plume convection is due to the former, whereas, the onset of layer instability of layers around the cylinder is due to the latter. Both types can be found in the flow field. The transport mechanism of layers at the top of the basic plume belongs to former while that due to basic plume and layer around the cylinder are the latter. The increase in Ra T reinforces the plume convection and reduces the layer numbers generated around the cylinder for the same buoyancy ratio. For the same Ra T , the increase of R ρ suppresses the plume convection but reinforces the layers generated around the cylinder. The profiles of local Nusselt number reflects the heat transfer characteristics of plume convection and layered structure. The profiles of averaged Nusselt number are between the pure conduction and natural convection modes and the variation is due to the evolution of layers. Received on 13 September 1996  相似文献   

14.
Computational results for control of flow past a circular cylinder using small rotating cylinders are presented. A well-proven stabilized finite-element method, that has been applied to various flow problems earlier, is utilized to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The formulation is first applied to study flow past an isolated rotating cylinder. Excellent match with experimental results, reported earlier, is observed. It is found that in purely two-dimensional flows, very high lift coefficients can be realized. However, it is observed, via three-dimensional Navier–Stokes simulations, that the end-effects and centrifugal instabilities along the cylinder span lead to a loss of lift and increase in drag. The aspect ratio of the cylinder plays an important role. The flow past a bluff body with two rotating control cylinders is studied using 2-D numerical simulations. The effect of the Reynolds number is studied by carrying out simulations for Re=102and 104. Finite element meshes with an adequate number of grid points are employed to resolve the flow in the gap between the main and control cylinders. Two values of the gap are considered: 0·01D and 0·075 D, where D is the diameter of the main cylinder. It is observed that when the control cylinders rotate at high speed, such that the tip speed is 5 times the free-stream speed, the flow at Re=100 achieves a steady state. For Re=104, even though the flow remains unsteady, the wake is highly organized and narrower compared to the one without control. The results are in good agreement with the flow-visualization studies conducted by other researchers for bluff bodies using similar control concepts. In all the cases, a significant reduction in the overall drag coefficient and the unsteady aerodynamic forces acting on the main cylinder is observed. Results are also presented for the power requirements of the system for translation and rotation. It is found that the coefficient of power required for the rotation of control cylinders is significant for Re=100 but negligible for Re=104flow. The size of the gap is found to be more critical for the Re=104flows. This study brings out the relevance of the gap as a design parameter for such flow control devices.  相似文献   

15.
A computer program has been developed to predict laminar source-sink flow in a rotating cylindrical cavity. Although the program is based on a standard finite difference technique for recirculating flow, it incorporates two novel features. Step changes in grid size are employed to obtain sufficient resolution in the boundary layers and special treatment is given to the solution of the pressure correction equations, in the ‘SIMPLE’ algorithm, in order to improve the convergence properties of the method. Results are presented both for the flow in an infinite rotating cylindrical annulus and a finite rotating cylindrical cavity, with the inner cylindrical surface acting as a uniform source and the outer cylinder as a sink. These show good agreement with existing analytical solutions and illustrate some of the problems associated with the computation of rapidly rotating flows.  相似文献   

16.
A free convertion flow of an optically dense viscous incompressible fluid along a vertical thin circular cylinder has been studied with effect of radiation when the surface temperature is uniform. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations. Solutions of the governing equations are obtained employing the implicit finite difference methods together with Keller box scheme as well the local nonsimilarity method with second order truncation for all ξ (nondimensional transverse curvature parameter) in the interval [0,10] and are expressed in terms of local Nusselt number for a range of values of the pertinent parameters. Effects of pertinent parameters, such as, the radiation parameter, R d , the surface temperature parameter, θ w , taking Prandtl number, Pr, equals 0.7 on the velocity and temperature field are also presented graphically. From the solution it is seen that increase of R d , or θ w leads to increase in the local rate of heat transfer coefficients. Results obtained by both the methods are obtained in excellent agreement between each other upto ξ = 10.  相似文献   

17.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

18.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Computations of the hydrodynamic coefficients, displacement-amplitude ratios and loadings on floating vertical circular cylinder due to diffraction and radiation are presented here. The boundary value problem (BVP) is solved in terms of diffraction potential and three potentials due to radiation, two translational motions about x-axis (surge) and about z-axis (heave), one rotational motion about y-axis (pitch). The analytical expressions for the hydrodynamic coefficients, displacement-amplitude ratios and loadings for this case were obtained previously by Bhatta and Rahman [1]. In this paper, we present the computational aspects of those analytical results for different depth to radius and draft to radius ratios. JMSL (Java Mathematical and Statistical Library) is used to compute special functions and solve complex matrix equations.  相似文献   

20.
An approximate model is proposed to describe the hydrodynamic processes of viscous fluid flow on a moving rotating cylinder in a stationary formulation. Expressions for the critical and optimum thickness of the fluid layers are obtained, and conditions for the existence of a roll in front of the moving cylinder are determined. The obtained solutions are used to derive relations between the physical and geometrical parameters of a rotating adhesion skimmer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号