首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on DFT calculations, the catalytic mechanism of palladium(0) atom, commonly considered as the catalytic center for Sonogashira cross-coupling reactions, has been analyzed in this study. In the cross-coupling reaction of iodobenzene with phenylacetylene without co-catalysts and bases involved, mechanistically plausible catalytic cycles have been computationally identified. These catalytic cycles typically occur in three stages: 1) oxidative addition of an iodobenzene to the Pd(0) atom, 2) reaction of the product of oxidative addition with phenylacetylene to generate an intermediate with the Csp bound to palladium, and 3) reductive elimination to couple the phenyl group with the phenylethynyl group and to regenerate the Pd(0) atom. The calculations show that the first stage gives rise to a two-coordinate palladium (Ⅱ) intermediate (ArPdI). Starting from this intermediate, the second oxidative stage, in which the C–H bond of acetylene adds to Pd(Ⅱ) without co-catalyst involved, is called alkynylation instead of transmetalation and proceeds in two steps. Stage 3 of reductive elimination of diphenylacetylene is energetically favorable. The results demonstrate that stage 2 requires the highest activation energy in the whole catalysis cycle and is the most difficult to happen, where co-catalysts help to carry out Sonogashira coupling reaction smoothly.  相似文献   

2.
DFT studies with the B3LYP functional have been carried out on the Suzuki-Miyaura cross-coupling reactions of phenyl chloride and phenylboronic acid catalyzed by palladium complexes with N- or P-chelating ligands. The full catalytic cycle, from the addition of reactants to the catalyst to the release of the cross-coupled product from the complexed intermediate, has been examined. The stages within the cycle, such as oxidative addition, transmetalation, and reductive elimination, were validated by linking the mechanistically relevant intermediates and transition states. Various derivatives of diimine, diphosphine, and diamine were considered as potential model ligands. The catalytic reaction employing diimine as the chelating ligand has been verified as the one with the most energetically feasible route.  相似文献   

3.
利用密度泛函理论(DFT)计算研究了[Fe(MgBr)2]催化的邻氯苯乙稀与溴代苯基镁反应生成联芳化合物的交叉偶联反应的机理. 研究了两个机理. 机理A包括三个基本步骤: (I) 氧化[Fe(MgBr)2]生成[Ar-Fe(MgBr)],(II) 加成产生[Ar-(phenyl)-Fe(MgBr)2], (III) 还原消除回到[Fe(MgBr)2]. 机理B不形成[Ar-Fe(MgBr)]. 在第一步,溴代苯基镁在[Cl-Mg-Br]离解形成[Ar-Fe(MgBr)]之前直接进攻氧化加成后的中间体. 考虑溶剂效应后, 机理B优于机理A. 无论机理A还是机理B, 整个催化循环过程的决速步骤都是[Ar-(phenyl)-Fe(MgBr)2]的还原消除再生催化剂[Fe(MgBr)2]的步骤, 使用导体极化连续模型(CPCM)方法计算其在四氢呋喃溶剂中的吉布斯自由能(ΔGsol)是82.98 kJ·mol-1.  相似文献   

4.
A novel pathway for the homocoupling reaction has been achieved using a similar protocol as the cross-coupling reaction. Ethyl bromoacetate is chosen to initiate the coupling reaction through oxidative addition to a Pd(0) species, and an PdBr(enolate) intermediate is formed. This intermediate can undergo double transmetalation with an alkynyl copper reagent, and reductive elimination produces a variety of diynes in high yields.  相似文献   

5.
This review reports a series of mechanistic studies on Pd-catalyzed C-C cross-coupling reactions via density functional theory(DFT) calculations.A brief introduction of fundamental steps involved in these reactions is given,including oxidative addition,transmetallation and reductive elimination.We aim to provide an important review of recent progress on theoretical studies of palladium-catalyzed carbon-carbon cross-coupling reactions,including the C-C bond formation via C-H bond activation,decarboxylation,Pd(Ⅱ)/Pd(Ⅳ) catalytic cycle and double palladiums catalysis.  相似文献   

6.
A palladium(0)/monophosphine catalyst promotes a cyclization reaction of 2-(alkynyl)aryl isocyanates with organoboron reagents to produce stereodefined 3-alkylideneoxindoles. The alkynyl and isocyanato groups undergo oxidative cyclization with Pd(0) to form an oxapalladacycle intermediate. Subsequent transmetalation and reductive elimination afford the product.  相似文献   

7.
The first oxidative cross-coupling of allylsilanes with aryl boronic acids has been developed by palladium catalysis. The reaction between β-substituted allyl(trimethyl)silanes and a wide range of aryl boronic acids afforded allylarenes in moderate to good yields and excellent selectivity. On the basis of experimental results and literature reports, it was suggested that the reaction might start from transmetalation of aryl boronic acid with AgOAc followed by transmetalation with Pd(II) to give an arylpalladium acetate complex as a key intermediate. This intermediate underwent either electrophilic addition/desilylation or transmetalation with allylsilane and subsequent reductive elimination to give the final product.  相似文献   

8.
DFT calculations have been performed on the palladium‐catalyzed carboiodination reaction. The reaction involves oxidative addition, alkyne insertion, C?N bond cleavage, and reductive elimination. For the alkylpalladium iodide intermediate, LiOtBu stabilizes the intermediate in non‐polar solvents, thus promoting reductive elimination and preventing β‐hydride elimination. The C?N bond cleavage process was explored and the computations show that PPh3 is not bound to the Pd center during this step. Experimentally, it was demonstrated that LiOtBu is not necessary for the oxidative addition, alkyne insertion, or C?N bond cleavage steps, lending support to the conclusions from the DFT calculations. The turnover‐limiting steps were found to be C?N bond cleavage and reductive elimination, whereas oxidative addition, alkyne insertion, and formation of the indole ring provide the driving force for the reaction.  相似文献   

9.
An efficient catalytic system has been developed for the synthesis of unsymmetrical substituted alkynes via the thiosemicarbazone salicylaldiminato palladium(II)-catalyzed alkynylation couplings between arylboronic acids and alkynes or alkynyl carboxylic acids under mild conditions.  相似文献   

10.
The electron-poor palladium(0) complex L3Pd (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) reacts with Grignard reagents RMgX and organolithium compounds RLi via transmetalation to furnish the anionic organopalladates [L2PdR], as shown by negative-ion mode electrospray-ionization mass spectrometry. These palladates undergo oxidative additions of organyl halides R′X (or related SN2-type reactions) followed by further transmetalation. Gas-phase fragmentation of the resulting heteroleptic palladate(II) complexes results in the reductive elimination of the cross-coupling products RR′. This reaction sequence corresponds to a catalytic cycle, in which the order of the elementary steps of transmetalation and oxidative addition is switched relative to that of palladium-catalyzed cross-coupling reactions proceeding via neutral intermediates. An attractive feature of the palladate-based catalytic system is its ability to mediate challenging alkyl–alkyl coupling reactions. However, the poor stability of the phosphine ligand L against decomposition reactions has so far prevented its successful use in practical applications.  相似文献   

11.
Despite the advances in the field of carbon-halogen bond formation, the straightforward catalytic access to selectively functionalized iodoaryls remains a challenge. Here, we report a one-pot synthesis of ortho-iodobiaryls from aryl iodides and bromides by palladium/norbornene catalysis. This new example of Catellani reaction features the initial cleavage of a C(sp2)−I bond, followed by the key formation of a palladacycle through ortho C−H activation, the oxidative addition of an aryl bromide and the ultimate restoration of the C(sp2)−I bond. A large variety of valuable o-iodobiaryls has been synthesized in satisfactory to good yields and their derivatization have been described too. Beyond the synthetic utility of this transformation, a DFT study provides insights on the mechanism of the key reductive elimination step, which is driven by an original transmetallation between palladium(II)-halides complexes.  相似文献   

12.
The mechanism of the cross-coupling of phenylboronic acid with acetic anhydride, a viable model of the widely used Suzuki reaction, has been studied by DFT calculations at the BP86/6-31G level of theory. Two alternative catalytic cycles have been investigated, one starting from a neutral Pd(0)L(2) complex, the other from an anionic "Jutand-type" [Pd(0)L(2)X](-) species. The reaction profiles are in good agreement with the experimental findings, as both pathways require only moderate activation energies. Both pathways are dominated by cis-configured square-planar palladium(II)diphosphine intermediates. Despite careful investigations, we did not find in this model reaction any evidence for five-coordinate palladium(II) intermediates, which are commonly believed to cause the profound effects of counterions in palladium-catalyzed transformations. Instead, our calculations suggest that the higher catalytic activity of anionic complexes, such as [Pd(PMe(3))(2)OAc](-), may arise from their stronger ability to coordinate to carbon electrophiles. The transmetalation sequence is the same for both catalytic cycles, involving the dissociation of one phosphine ligand from the palladium. In the decisive transition state, in which the phenyl group is transferred from boron to palladium, the acetate base is found to be in a bridging coordination between these two atoms.  相似文献   

13.
Mechanistic questions concerning palladium and norbornene catalyzed aryl-aryl coupling reactions are treated in this paper: how aryl halides react with the intermediate palladacycles, formed by interaction of the two catalysts with an aryl halide, and what is the rational explanation of the "ortho effect" (caused by an ortho substituent in the starting aryl halide), which leads to aryl-aryl coupling with a second molecule of aryl halide rather than to aryl-norbornyl coupling. Two possible pathways have been proposed, one involving aryl halide oxidative addition to the palladacycle, the other passing through a palladium(II) transmetalation, also involving the palladacycle, as previously proposed by Cardenas and Echavarren. Our DFT calculations using M06 show that, in palladium-catalyzed reaction of aryl halides, not containing ortho substituents, and norbornene, the intermediate palladacycle formed has a good probability to undergo transmetalation, energetically favored over the oxidative addition leading to Pd(IV). The unselective sp(2)-sp(2) and sp(2)-sp(3) coupling, experimentally observed in this case, can be explained in the framework of the transmetalation pathway since the energetic difference between aryl attack onto the aryl or norbornyl carbon of the palladacycle intermediate is quite small. On the other hand, according to the experimentally observed "ortho effect", selective aryl-aryl coupling only occurs in the reactions of ortho-substituted metallacycles. The present work offers the first possible rationalization of this finding. These in situ formed palladacycles containing an ortho substituent could more easily undergo oxidative addition of an aryl halide rather than reductive elimination from the transmetalation intermediate as a result of a steric clash in the transition state of the latter. The now energetically accessible Pd(IV) intermediate, featuring a Y-distorted trigonal bipyramidal structure, can account for the reported selective aryl-aryl coupling through a reductive elimination which is easier than aryl-norbornyl coupling. Thus, the steric effect represents the main factor that dictates the energetic convenience of the system to follow the Pd(IV) or the transmetalation pathway. Ortho substituents cause a higher energy transition state for reductive elimination from the transmetalation intermediate than for oxidative addition to the metallacycle palladium(II) and the pathway based on the latter predominates.  相似文献   

14.
A DFT/B3LYP model study has been carried out on the cyclocarbopalladation and on an unusual 1,5 vinyl to aryl palladium shift which are the two first steps of a cyclocarbopalladation-Stille coupling tandem reaction of various gamma-bromopropargylic-1,2 diols with alkenyls or alkynyl stannanes catalyzed by Pd(PPh(3))(4). From the calculations, the active intermediates in the catalytic process appear to bear a single phosphine ligand, the palladium(II) center keeping in all cases a square-planar coordination pattern either through intramolecular binding of the triple bond or via an intramolecular Pd...C(phenyl) interaction. The computation of the various transition states and intermediates for the 1,5 vinyl to aryl palladium shift reveals that the intimate mechanism of this pathway corresponds to a one-step hydrogen transfer between the two negatively charged carbon atoms of the vinyl and phenyl groups. A two-step pathway involving a Pd(IV) intermediate is not likely to occur. This conclusion may apply to other 1,n-palladium shifts which have been experimentally observed in various organometallic transformations.  相似文献   

15.
Density functional theory calculations were done to examine the potential energy surfaces of Ni(I)-catalyzed Negishi alkyl-alkyl cross-coupling reactions by using propyl iodide and isopropyl iodide as model alkyl electrophiles and CH 3ZnI as a model alkyl nucleophile. A four-step catalytic cycle involving iodine transfer, radical addition, reductive elimination, and transmetalation steps were characterized structurally and energetically. The reaction mechanism for this catalytic cycle appears feasible based on the calculated free energy profiles for the reactions. The iodine transfer step is the rate-determining step for the Ni(tpy)-CH 3 (tpy = 2,2'6',2'-terpyridine) reactions with alkyl iodides. For secondary alkyl electrophiles, the oxidative addition intermediate, Ni(III), prefers to undergo decomposition over reductive elimination, whereas for the primary alkyl electrophiles, Ni(III) prefers to undergo reductive elimination over decomposition based on comparison of the relative reaction rates for these two types of steps. In addition, thermodynamic data were employed to help explain why the yield of the coupled product is very low from the Ni(II)-alkyl halide reactions with organozinc reagents.  相似文献   

16.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

17.
Wang ZL  Zhao L  Wang MX 《Organic letters》2012,14(6):1472-1475
Both copper(II)-mediated oxidative C-H bond activation and oxidative addition of copper(I) into a C-I bond produced an identical and structurally well-defined aryl-Cu(III) intermediate. The cross-coupling reaction of an aryl-Cu(III) intermediate with both terminal alkynes at an elevated temperature and alkynyllithium reagents under mild conditions led effectively to the formation of a C(aryl)-C(alkynyl) bond. An alternative mechanism has been proposed for the Castro-Stephens reaction.  相似文献   

18.
pi-Acidic alkene (olefin) ligands positively influence Pd-catalysed cross-coupling processes, interacting with both palladium(0) and palladium(ii) species, in some cases stabilising key catalytic intermediates. Rates of oxidative addition and reductive elimination are both affected. In certain cases, beta-hydrogen elimination can be slowed down by pi-acidic alkenes, which opens up new reaction pathways (e.g. interception of sigma-alkylpalladium(ii) species by appropriate nucleophiles). pi-Acidic alkene ligands can act independently or in a synergistic fashion with another two-electron donor ligand (e.g. amine, phosphine or N-heterocyclic carbene). The purpose of this perspective article is to highlight the impressive results that can be obtained using pi-acidic alkene ligands, with a particular focus on dibenzylidene acetone (dba) derivatives. Other types of alkene ligands, e.g. macrocyclic alkenes, are also discussed.  相似文献   

19.
Palladium(II) aryliodo complexes bearing chelating diphosphine ligands react with XeF2, giving iodoarene and rare palladium(II) difluoro complexes. The reaction is general with regard to the aryl group, with even C6F5-I undergoing facile reductive elimination from a Pd center.  相似文献   

20.
Song-Se Yi 《Tetrahedron letters》2007,48(38):6771-6775
A chitosan-supported palladium (Pd) (0) catalyst was prepared by simple adsorption of palladium(II) ion onto chitosan beads and a subsequent reduction process. To maintain mechanical stability, the chitosan-supported palladium(0) catalyst was cross-linked with either glutaraldehyde or diglycidyl ether polyethylene glycol. The catalysts were utilized for the Suzuki cross-coupling reaction in water. The catalyst, in the presence of a tetrabutylammonium bromide (TBAB) additive, showed excellent catalytic activity in microwave-prompted Suzuki cross-coupling reactions using various aryl halides and boronic acids. In addition, the catalyst was successfully reused up to five times without significant loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号