首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
In order to recognize the presence of the R553X point mutation of the cystic fibrosis (CF) gene in the human genome, a peptide nucleic acid (PNA) complementary to the mutated gene tract and bearing three adjacent chiral monomers based on D-lysine (chiral box) was synthesized and used as a probe in CE. Binding specificity was preliminarily studied with complementary and mismatched oligonucleotides by UV spectroscopy, electrospray MS, and electrophoresis, indicating a very high sequence selectivity. The chiral PNA probe was then hybridized to cyanine-5-labeled DNA samples (186 bp), obtained by PCR amplification, respectively, from: (a) normal homozygous subjects (wtDNA), (b) CF-affected homozygous subjects (mutDNA), (c) heterozygous subjects (healthy carriers) and denatured at low ionic strength. The PNA-DNA mixture was directly analyzed by CE with LIF detection: a new signal corresponding to the PNA-mutDNA duplex was observed, in the case of CF-affected homozygous subjects, whereas for the sample containing the mismatched sequence (normal homozygous wtDNA) only the signal corresponding to ssDNA (ss, single strand) was detected. In the case of heterozygous DNA, both PNA-mutDNA duplex and ssDNA were detected. With this simple assay, it was possible to discriminate in an easy way among the three cases (mutated homozygous, normal homozygous, and heterozygous subjects) with a total specificity, thus allowing a decisive advance for the diagnosis of CF.  相似文献   

2.
The electronic properties of double strands composed of trimeric LNA, PNA, DNA and RNA single strands were investigated by density-functional molecular orbital calculations. The computed hybridization energies for the double strands involving PNA or LNA are larger than those for DNA-DNA and RNA-RNA. The larger stability is attributed to the presence of a larger positive charge of the hydrogen atoms contributing to the hydrogen bonds in the PNA-DNA and LNA-DNA double-strands. These results are comparable to the experimental finding that PNA and LNA single strands display high affinity toward a complementary DNA or RNA single strand.  相似文献   

3.
In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10?6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10?12 M.  相似文献   

4.
《Analytical letters》2012,45(15):2485-2495
Abstract

Hybridization of 12-mers peptide nucleic acid (PNA) to complementary DNA was investigated in solution and on gold surfaces. The oligomers were designed to improve mismatch discrimination and minimize formation of secondary structures. Thermal denaturation experiments indicate high thermal stabilities for PNA-DNA hybrid with T m values close to calculated values. Hybridization of PNA-DNA at 45°C and room temperature showed no difference. Hybridization on gold surface was also investigated with complementary and noncomplementary DNAs. The results show that 12-mer PNA and DNA hybridization at room temperature retained high specificity within ~5 ng.  相似文献   

5.
The immobilization of oligonucleotides to solid surfaces can provide a platform of chemistry that is suitable for the development of biosensor and microarray technologies. Experiments were performed using a fiber optic nucleic acid biosensor based on total internal reflection fluorescence to examine the effects of the presence of non-complementary DNA on the detection of hybridization of complementary target DNA. The work has focused on the rates and extent of hybridization in the presence and absence of non-selective adsorption using fluorescein-labeled DNA. A stop-flow system of 137 microL volume permitted rapid introduction and mixing of each sample. Response times measured were on the order of seconds to minutes. Non-selective adsorption of non-complementary oligonucleotides (ncDNA) was found to occur at a significantly faster rate than hybridization of complementary oligomers (cDNA) in all cases. The presence of ncDNA oligonucleotides did not inhibit selective interactions between immobilized DNA and cDNA in solution. The presence of high concentrations of non-complementary genomic DNA had little effect on the extent of hybridization of complementary oligonucleotides, but actually reduced the response times of sensors to cDNA oligonucleotides.  相似文献   

6.
The immobilization of oligonucleotides to solid surfaces can provide a platform of chemistry that is suitable for the development of biosensor and microarray technologies. Experiments were performed using a fiber optic nucleic acid biosensor based on total internal reflection fluorescence to examine the effects of the presence of non-complementary DNA on the detection of hybridization of complementary target DNA. The work has focused on the rates and extent of hybridization in the presence and absence of non-selective adsorption using fluorescein-labeled DNA. A stop-flow system of 137 μL volume permitted rapid introduction and mixing of each sample. Response times measured were on the order of seconds to minutes. Non-selective adsorption of non-complementary oligonucleotides (ncDNA) was found to occur at a significantly faster rate than hybridization of complementary oligomers (cDNA) in all cases. The presence of ncDNA oligonucleotides did not inhibit selective interactions between immobilized DNA and cDNA in solution. The presence of high concentrations of non-complementary genomic DNA had little effect on the extent of hybridization of complementary oligonucleotides, but actually reduced the response times of sensors to cDNA oligonucleotides. Received: 26 September 2000 / Revised: 24 November 2000 / Accepted: 30 November 2000  相似文献   

7.
A laboratory-made surface plasmon resonance (SPR) instrument based on the detection of resonance excitation wavelength has been successfully fabricated. The performance and workability of the SPR instrument was demonstrated as a DNA biosensor. Biotinylated single-stranded oligonucleotides (ssDNA) were chemically immobilized on a gold-film surface of the SPR instrument as a DNA probe for the detection of its fully complementary, half-complementary and non-complementary ssDNA. The immobilization of the ssDNA probe was done by avidin-biotin linkage. The ssDNA used were 12-mer oligonucleotides. The sensing mechanism was based on the shift in resonance wavelength of an excitation light beam as the target ssDNA hybridized with the ssDNA on the gold-film surface. The linear dynamic ranges of the DNA biosensor for fully complementary and half-complementary ssDNA are 0.04-1.2 pM and 0.08-1.1 pM, respectively. The DNA biosensor showed higher sensitivity to fully complementary ssDNA than to half-complementary ssDNA. But no shift of resonance wavelength to the non-complementary ssDNA was observed.  相似文献   

8.
Fiber optic biosensors operated in a total internal reflection format were prepared based on covalent immobilization of 25mer lacZ single-stranded nucleic acid probe. Genomic DNA from Escherichia coli was extracted and then sheared by sonication to prepare fragments of approximately 300mer length. Other targets included a 25mer fully complementary lacZ sequence, 100mer polymerase chain reaction (PCR) products containing the lacZ sequence at various locations, and non-complementary DNA including genomic samples from salmon sperm. Non-selective adsorption of non-complementary oligonucleotides (ncDNA) was found to occur at a significantly faster rate than hybridization of complementary oligomers (cDNA) in all cases. The presence of ncDNA oligonucleotides did not inhibit selective interactions between immobilized DNA and cDNA in solution. The presence of high concentrations of non-complementary genomic DNA had little effect on extent or speed of hybridization of complementary oligonucleotides. Detection of genomic fragments containing the lacZ sequence was possible in as little as 20 s by observation of the steady-state fluorescence intensity increase or by time-dependent rate of fluorescence intensity changes.  相似文献   

9.
PNA-DNA chimeras present the interesting properties of PNA, such as the high binding affinity to complementary single-strand (DNA or RNA), and the resistance to nuclease and protease degradation. At the same time, the limitations of an oligomer containing all PNA residues, such as low water solubility, self-aggregation, and low cellular uptake, are effectively overcome. Further, PNA-DNA chimeras possess interesting biological properties as antisense agents. We have explored the ability of PNA-DNA chimeric strands to assemble in quadruplex structures. The rate constant for association of the quadruplexes and their thermodynamic properties have been determined by CD spectroscopy and differential scanning calorimetry (DSC). Thermal denaturation experiments indicated higher thermal and thermodynamic stabilities for chimeric quadruplexes in comparison with the corresponding unmodified DNA quadruplex. Singular value decomposition analysis (SVD) suggests the presence of kinetically stable intermediate species in the quadruplex formation process. The experimental results have been discussed on the basis of molecular dynamic simulations. The ability of PNA-DNA chimeras to form stable quadruplex structures expands their potential utility as therapeutic agents.  相似文献   

10.
Optical spectroscopy and molecular dynamics simulations have been used to study the interaction between a cationic cyanine dye and peptide nucleic acid (PNA)-DNA duplexes. This recognition event is important because it leads to a visible color change, signaling successful hybridization of PNA with a complementary DNA strand. We previously proposed that the dye recognized the minor groove of the duplex, using it as a template for the assembly of a helical aggregate. Consistent with this, we now report that addition of isobutyl groups to the PNA backbone hinders aggregation of the dye when the substituents project into the minor groove but have a weaker effect if directed out of the groove. UV-Visible and circular dichroic spectroscopy were used to compare aggregation on the different PNA-DNA duplexes, while molecular dynamics simulations were used to confirm that the substituents block the minor groove to varying degrees, depending on the configuration of the starting amino acid. In addition to a simple steric blockage effect of the substituent, the simulations suggest that directing the isobutyl group into the minor groove causes the groove to narrow and the duplex to become more rigid, structural perturbations that are relevant to the growing interest in backbone-modified PNA for applications in the biological and materials sciences.  相似文献   

11.
Cysteine modified NH(2)-end peptide nucleic acid (PNA) (24-mer) probe and 5'-thiol end labeled deoxyribonucleic acid (DNA) probes specific to Mycobacterium tuberculosis have been immobilized onto BK-7 gold coated glass plates for the detection of complementary, one-base mismatch, non-complementary targets and complementary target sequence in genomic DNA of Mycobacterium tuberculosis using a surface plasmon resonance (SPR) technique. The DNA/Au and PNA/Au bio-electrodes have been characterized using contact angle, atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) techniques, respectively. It is revealed that there is a 252 millidegrees SPR angle change in the case of PNA immobilization and 205 millidegrees for DNA immobilization, indicating increased amount of immobilized PNA molecules. Hybridization studies reveal that there is no binding of the non-complementary target to DNA/Au and PNA/Au electrode. Compared to the DNA/Au bioelectrode, PNA/Au electrode has been found to be more efficient for detection of one-base mismatch sequence. The PNA/Au bioelectrode shows better detection limit (1.0 ng ml(-1)) over the DNA-Au bioelectrode (3.0 ng ml(-1)). The values of the association (k(a)) and dissociation rate constant (k(d)) for the complementary sequence in case of the PNA/Au bioelectrode have been estimated as 8.5 x 10(4) m(-1) s(-1) and 3.6 x 10(-3) s(-1), respectively.  相似文献   

12.
Peptide nucleic acids (PNAs) are non-natural nucleic acid mimics that bind to complementary DNA and RNA with high affinity and selectivity. PNA can bind to nucleic acids in a number of different ways. Currently, the formation of PNA-oligonucleotide duplex, triplex, and quadruplex structures have been reported. PNAs have been used in numerous biomedicial applications, but there are few strategies to predictably improve the binding properties of PNAs by backbone modification. We have been studying the benefits of incorporating (S,S)-trans-cyclopentane diamine units (tcyp) into the PNA backbone. In this Communication, we report the improvement in stability associated with tcyp incorporation into PNA-DNA duplexes, triplexes, and quadruplexes. The broad utility of this modification across multiple types of PNA structures is unique and should prove useful in the development of applications that rely on PNA.  相似文献   

13.
Peptide nucleic acids (PNA) and PNA–DNA chimeras carrying thiol groups were used for surface functionalization of Au nanoparticles. Conjugation of PNA to citrate‐stabilized Au nanoparticles destabilized the nanoparticles causing them to precipitate. Addition of a tail of glutamic acid to the PNA prevented destabilization of the nanoparticles but resulted in loss of interaction with complementary sequences. Importantly, PNA–DNA chimeras gave stable conjugates with Au nanoparticles. The hybridization and melting properties of complexes formed from chimera–nanoparticle conjugates and oligonucleotide–nanoparticle conjugates are described for the first time. Similar to oligonucleotide–nanoparticle conjugates, conjugates with PNA–DNA chimeras gave sharper and more‐defined melting profiles than those obtained with unmodified oligonucleotides. In addition, mismatch discrimination was found to be more efficient than with unmodified oligonucleotides.  相似文献   

14.
[structure: see text] A mixed-base, beta-amino acid containing, pyrrolidinyl peptide nucleic acid (PNA) binds strongly and selectively to complementary DNA in an exclusively antiparallel fashion. The PNA-DNA binding specificity strictly follows the Watson-Crick base-pairing rules.  相似文献   

15.
We describe the synthesis and characterization of a thermoreversibly cross-linked biopolymer microgel based on protein, DNA, and peptide nucleic acid (PNA) components. The DNA assembles into a trifunctional three-way junction (TWJ) with single-stranded overhangs. PNA oligomers complementary to these overhangs and bearing terminal biotin groups hybridize to the DNA TWJ and simultaneously bind to the tetrafunctional protein avidin, leading to a cross-linked system. Dynamic light scattering experiments reveal that micron-sized particles are formed. Static light scattering was used to characterize the internal structure of these microgels, which were found to have a fractal dimension of 1.85, indicative of a loose network structure. Heating disrupts the weakest component in the system, namely the PNA-DNA hybrid, resulting in dissolution of the microgel, while cooling restores the hydrogen bonding leading to reassembly of the microgel. Variation of the nucleotide sequence permits tuning of the gelation temperature with fine control.  相似文献   

16.
Reisberg S  Dang LA  Nguyen QA  Piro B  Noel V  Nielsen PE  Le LA  Pham MC 《Talanta》2008,76(1):206-210
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer-solution interface. A reagentless and direct electrochemical detection was obtained by detection of the electrochemical changes using square wave voltammetry (SWV). An increase in the peak current of quinone was observed upon hybridization of probe on the target, whereas no change is observed with non-complementary sequence. In addition, the biosensor is highly selective to effectively discriminate a single mismatch on the target sequence. The sensitivity is also presented and discussed.  相似文献   

17.
This paper reports the use of mass spectrometry to characterize oligonucleotides immobilized to the surfaces of biochips. Biotinylated oligonucleotides were immobilized to self-assembled monolayers that present a streptavidin layer and then treated with a complementary strand to present short duplexes. Treatment of the surface with 5-methoxysalicylic acid and ammonium citrate matrix allows the individual oligonucleotides to be observed by matrix-assisted laser desorption/iozation and time-of-flight mass spectrometry (MALDI-TOF MS). Examples are shown wherein this method is applied to assays of hybridization, of cleavage by a deoxyribozyme, of a dephosphorylation reaction, and of the adducts formed on treatment of DNA with cis-platin. This work provides an early example of the application of mass spectrometry to DNA biochips and may substantially expand the applications of the now common oligonucleotide arrays.  相似文献   

18.
Gold‐surface grafted peptide nucleic acid (PNA) strands, which carry a redox‐active ferrocene tag, present unique tools to electrochemically investigate their mechanical bending elasticity based on the kinetics of electron‐transfer (ET) processes. A comparative study of the mechanical bending properties and the thermodynamic stability of a series of 12‐mer Fc‐PNA?DNA duplexes was carried out. A single basepair mismatch was integrated at all possible strand positions to provide nanoscopic insights into the physicochemical changes provoked by the presence of a single basepair mismatch with regard to its position within the strand. The ET processes at single mismatch Fc‐PNA?DNA modified surfaces were found to proceed with increasing diffusion limitation and decreasing standard ET rate constants k0 when the single basepair mismatch was dislocated along the strand towards its free‐dangling Fc‐modified end. The observed ET characteristics are considered to be due to a punctual increase in the strand elasticity at the mismatch position. The kinetic mismatch discrimination with respect to the fully‐complementary duplex presents a basis for an electrochemical DNA sensing strategy based on the Fc‐PNA?DNA bending dynamics for loosely packed monolayers. In a general sense, the strand elasticity presents a further physicochemical property which is affected by a single basepair mismatch which may possibly be used as a basis for future DNA sensing concepts for the specific detection of single basepair mismatches.  相似文献   

19.
《Electroanalysis》2017,29(3):917-922
A ferrocenyl intercalator was investigated to develop an electrochemical DNA biosensor employing a peptide nucleic acid (PNA) sequence as capture probe. After hybridization with single strand DNA sequence, a naphthalene diimide intercalator bearing ferrocene moieties (FND) was introduced to bind with the PNA‐DNA duplex and the electrochemical signal of the ferrocene molecules was used to monitor the DNA recognition. Electrochemical impedance spectroscopy was used to characterize the different modification steps. Differential pulse voltammetry was employed to evaluate the electrochemical signal of the FND intercalator related to its interaction with the complementary PNA‐DNA hybrid. The ferrocene oxidation peaks were utilised for the target DNA quantification. The developed biosensor demonstrated a good linear dependence of FND oxidation peak on DNA concentration in the range 1 fM to 100 nM of target DNA, with a low detection limit of 11.68 fM. Selectivity tests were also investigated with a non‐complementary DNA sequence, indicating that the FND intercalator exhibits a selective response to the target PNA‐DNA duplex.  相似文献   

20.
Guanine-rich peptide nucleic acid probes hybridize to DNA G quadruplex targets with high affinity, forming PNA-DNA heteroquadruplexes. We report a surprising degree of kinetic discrimination for PNA heteroquadruplex formation with a series of DNA targets. The fastest hybridization is observed for targets folded into parallel morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号