共查询到20条相似文献,搜索用时 9 毫秒
1.
Haiming Wen Yonghao Zhao Ying Li Osman Ertorer Konstantin M. Nesterov Rinat K. Islamgaliev 《哲学杂志》2013,93(34):4541-4550
Two mechanisms for deformation-induced grain growth in nanostructured metals have been proposed, including grain rotation-induced grain coalescence and stress-coupled grain boundary (GB) migration. A study is reported in which significant grain growth occurred from an average grain size of 46?nm to 90?nm during high pressure torsion (HPT) of cryomilled nanocrystalline Cu powders. Careful microstructural examination ascertained that grain rotation-induced grain coalescence is mainly responsible for the grain growth during HPT. Furthermore, a grain size dependence of the grain growth mechanisms was uncovered: grain rotation and grain coalescence dominate at nanocrystalline grain sizes, whereas stress-coupled GB migration prevails at ultrafine grain sizes. In addition, detwinning of the preexisting deformation twins was observed during HPT of the cryomilled Cu powders. The mechanism of detwinning for deformation twins was proposed to be similar to that for growth twins. 相似文献
2.
L. S. Shvindlerman V. G. Sursaeva V. P. Yashnikov R. G. Faulkner 《Interface Science》1994,2(2):153-168
A new method is described for data-logging large amounts of grain boundary misorientation information from channelling patterns in the scanning electron microscope (SEM). The method relies on producing specimens where the grain size is larger than the specimen thickness and where the grain boundary planes are perpendicular to the specimen plane (the so-called columnar structure). Results for grain growth in pure aluminium at 460 and 500°C are presented. There is an increase in the proportion of low angle boundaries at the expense of high angle boundaries during growth times of up to a few hours. The reasons are thought to be partly connected with lower low angle boundary mobility compared with high angle boundaries. However, the growth kinetics appear to be normal over the entire growth time range. 相似文献
3.
Grain boundary (GB) motion in high-purity Cu material (5N8 and 5N Cu) is investigated using the results of radiotracer GB diffusion measurements with tracers exhibiting fundamental differences in the solute-matrix atom interactions. The results on GB solute diffusion of Ag (revealing a miscibility gap in the Ag-Cu phase diagram) and Au (forming intermetallic compounds with Cu) in Cu and on Cu self-diffusion are analyzed.The initial parts of the Ag and Cu penetration profiles turned out to be substantially curved. The profile curvature is explained via the effect of GB motion during 110m
Ag and 64Cu GB penetration. The activation enthalpies of GB motion in these two independent measurements occurred to be very close, 95 and 103 kJ/mol, respectively. Moreover, these values turn out to be close, but still somewhat larger than the activation enthalpy of Cu GB self-diffusion in Cu material of the same very high purity, Q
Cu
gb = 72 kJ/mol. Although tracer diffusion measurements of Au GB diffusion in Cu yielded only limited information on GB motion, the absolute values of GB velocities are consistent with those calculated from the Ag and Cu GB diffusion data. 相似文献
4.
Wetting of 975 grain boundaries (GB's) by liquid Cu in an iron-based alloy has been studied as a function of the five macroscopic degrees of freedom (DoF's) of grain boundary character. In addition, models of GB energy in terms of all five DoF's, and of anisotropic solid-liquid interfacial energy have been developed. The experimentally observed wetting behavior is interpreted in terms of the model, and it is shown that reasonable overall agreement is obtained between experimental results and model predictions. 相似文献
5.
The microstructure and texture evolution during annealing of rolled pure Mg, at temperatures ranging from 150 to 400°C, was characterised in the present study. A grain growth exponent of n?=?13 was observed and the activation energy for grain growth kinetics was found to be 95.6?kJ?mol?1. Further, broadening of the normalised grain size distributions, indicating abnormal grain growth, was also observed at all temperatures of annealing. The sample had a dominant basal texture before annealing. However, after annealing up to a temperature of 300°C, the alleviation of basal texture was observed in the samples. On further annealing at a temperature of 400°C, a strong basal texture was developed in the samples. The mobility of high angle grain boundaries, which is proportional to correlated misorientation distribution, was observed to be responsible for texture strengthening of the material. The grain boundary mobility changes during grain growth led to the growth of either small or large grains. It was further observed that the growth of small grains caused the formation of basal fibre and large grains led to the weakening of basal texture. 相似文献
6.
The redox reaction TiO2 TiO2- + /2O2(gas) can modify the oxygen deficiency and electrical conductivity of TiO2– upon changing the ambient oxygen pressure. It is found that in nanocrystalline films this leads to significant changes in even at relatively low temperatures (200–325°C) that were previously considered too low to modify TiO2 defect chemistry. This unusual phenomenon is attributed to the fine-grained structure and the important role of grain boundary (GB) diffusion in these films. A phenomenological model of the low temperature redox mechanism in nanocrystalline TiO2– films is elaborated. Taking into account the impact of GB diffusion and considering time-dependent decay of the volume fraction of GB diffusion sites, we derive a modified parabolic law for the redox reaction kinetics. It is demonstrated that this law describes very well the electrical response kinetics of nanocrystalline TiO2– thin films during exposure to oxygen between 200 and 325°C. From the fitting between the experimental results and this formula the activation energy of chemical diffusion in TiO2– bulk and GBs is evaluated, obtaining 0.69 and 0.52 eV, respectively. 相似文献
7.
8.
基于采用晶体有序化程度参量ψ和晶体学取向θ来表示多晶粒结构的相场模型,利用自适应有限元方法模拟了多晶材料等温过程中的晶粒粗化现象.模拟结果显示,在曲率作用下,通过晶界迁移弯曲晶界逐渐平直化,小晶粒逐渐被大晶粒吞并,当晶界之间的取向差较小时,满足一定能量和几何条件的两晶粒在界面能作用下会发生转动,合并为单个晶粒.模拟结果与实验结果符合较好.因此,该相场模型可以很好地用来模拟固态相变中多晶材料的生长粗化等现象.
关键词:
相场
晶界迁移
晶粒转动
粗化 相似文献
9.
The grain boundary statistic in zinc polycrystals in contact with saturated Ga(Zn) melt has been studied. The misorientation angle distributions for zinc thin foil and zinc plates were obtained. The influence of the misorientation angle value on the wetting probability p of grain boundaries was observed. The grain boundary energy distribution parameters were obtained by using the p() relationship. The dihedral angles in triple lines of non-wetted zinc samples were also measured and their distribution was used to obtain the grain boundary energy distribution function. The parameters obtained by two different methods correspond to one other. 相似文献
10.
11.
M. Upmanyu G.N. Hassold A. Kazaryan E.A. Holm Y. Wang B. Patton D.J. Srolovitz 《Interface Science》2002,10(2-3):201-216
We have performed mesoscopic simulations of microstructural evolution during curvature driven grain growth in two-dimensions using anisotropic grain boundary properties obtained from atomistic simulations. Molecular dynamics simulations were employed to determine the energies and mobilities of grain boundaries as a function of boundary misorientation. The mesoscopic simulations were performed both with the Monte Carlo Potts model and the phase field model. The Monte Carlo Potts model and phase field model simulation predictions are in excellent agreement. While the atomistic simulations demonstrate strong anisotropies in both the boundary energy and mobility, both types of microstructural evolution simulations demonstrate that anisotropy in boundary mobility plays little role in the stochastic evolution of the microstructure (other than perhaps setting the overall rate of the evolution. On the other hand, anisotropy in the grain boundary energy strongly modifies both the topology of the polycrystalline microstructure the kinetic law that describes the temporal evolution of the mean grain size. The underlying reasons behind the strongly differing effects of the two types of anisotropy considered here can be understood based largely on geometric and topological arguments. 相似文献
12.
Microstructure evolution and grain growth in nanostructured aluminium films has been examined. The films were produced by vacuum evaporation on NaCl (100) substrate. Time dependences of mean grain area are presented. It has been revealed that the normal grain growth takes place in the films. The obtained data on the normal grain growth in 3-D films were compared with those for 2-D aluminium strips and foils. It was concluded that in the temperature range studied the grain growth kinetics is determined by triple junctions dragging force. 相似文献
13.
The topological changes that occur during coarsening of 2D and 3Dcellular structures, such as polycrystals, areinvestigated. Particular attention is given to the elimination ofgrain boundaries and grains with more than the minimum number oftopological elements. A thermodynamic criterion is introduced tofind out which topological transformations are favoured, based on theevaluation of the Gibbs free energy of the initial and finalconfigurations. In general, elimination of grains is possible only ifthe number of their neighbours is below a critical value, which maybe affected by geometry. 相似文献
14.
Wetting of grain boundaries (GB's) by liquid Cu in an Fe-30wt%Mn-10wt%Cu alloy has been studied as a function of the five macroscopic degrees of freedom (DoF's) of grain boundary character. These were chosen to consist of two grain boundary normals (or bounding planes) and a twist angle. The five DoF's of 975 GB's were determined by electron backscattering patterns and serial sectioning, after annealing at 1120°C, and each GB was categorized as being either wet, dry, or mixed (i.e. partly wet and partly dry). Interpretation of the wetting behavior by means of a model of GB energy, which includes consideration of the five macroscopic DoF's, led to correct predictions of wet and dry behavior in 80% of the GB's studied. 相似文献
15.
ABSTRACT Molecular dynamics simulations were used to study the atomic mechanisms of deformation of nanocrystalline gold with 2.65–18?nm in grain size to explore the inverse Hall–Petch effect. Based on the mechanical responses, particularly the flow stress and the elastic-to-plastic transition, one can delineate three regimes: mixed (10–18?nm, dislocation activities and grain boundary sliding), inverse Hall-Petch (5–10?nm, grain boundary sliding), and super-soft (below 5?nm). As the grain size decreases, more grain boundaries present in the nanocrystalline solids, which block dislocation activities and facilitate grain boundary sliding. The transition from dislocation activities to grain boundary sliding leads to strengthening-then-softening due to grain size reduction, shown by the flow stress. It was further found that, samples with large grain exhibit pronounced yield, with the stress overshoot decrease as the grain size decreases. Samples with grain sizes smaller than 5?nm exhibit elastic-perfect plastic deformation without any stress overshoot, leading to the super-soft regime. Our simulations show that, during deformation, smaller grains rotate more and grow in size, while larger grains rotate less and shrink in size. 相似文献
16.
The microstructure of sintered nanoscale tungsten carbide powders with 1?wt % Si addition was found to be populated by an abnormally large number of elongated grains. Interrupted sintering experiments were conducted to clarify the origins of the excessive abnormal grain growth seen in the microstructure. It was observed that rapid coarsening occurred at high temperatures owing to the formation of a liquid phase. However, the grain shape evolution during this coarsening period was found to be a consequence of excessive stacking faults and micro twins on the basal planes probably generated by reaction of WC with Si. Analyses of the microstructures and the isothermal and non isothermal coarsening behaviors suggested that the platelet morphology evolved by defect-assisted nucleation and growth on faceted grains. Based on experimental evidence from samples interrupted at low temperatures and crystal growth theories, we discuss the possible mechanisms that eventually led to the rampant platelet-type morphology. Further, the influence of such rapid grain growth on the shrinkage rate during sintering is also discussed. In comparison with the cyclic coarsening-densification process of sintering in pure nanoscale WC, the addition of Si leads to only two distinct sintering stages: either densification dominated or coarsening dominated. Concurrent densification and coarsening cannot be sustained particularly in the presence of a liquid phase that significantly enhances coarsening. 相似文献
17.
In this work we introduce a method to capture the proliferation of material defects that carry inelastic deformation, in microstructures simulated through isobaric–isothermal molecular dynamics. Based on the premise that inelastic dissipation is accompanied by a local temperature rise, our method involves analyzing the response of a chain of Nosé–Hoover thermostats that are coupled to the atomic velocities, while the microstructure deforms under the influence of a ramped external stress. We report results obtained from the uniaxial deformation of two nanocrystalline copper microstructures and show that our analysis allows the dissipative signal of a variety of inelastic events to be effectively unified via an ‘avalanche’ of dissipation. Based on this avalanche, we quantitatively compare dissipation for inelastic deformation under tension vs. compression, observing a significant tension–compression asymmetry in this regard. It is concluded that the present method is useful for discerning critical points that correspond to collective yield and inelastic flow. 相似文献
18.
E. Rabkin 《Interface Science》1996,3(3):219-226
The grain boundary diffusion in a binary system which exhibits a grain boundary phase transition is considered in the framework of Fisher's model. The kinetic law of the growth of the grain boundary phase and the distribution of the diffusant near the grain boundary are calculated. The method of determining of the concentration dependence of the grain boundary diffusion coefficient from the experimentally measured penetration profiles of the diffusant along the grain boundaries is suggested. The experimental results on Zn diffusion in Fe(Si) bicrystals, Ni diffusion in Cu bicrystals and grain boundary grooving in Al in the presence of liquid In are discussed in light of the suggested model. 相似文献
19.
The thermodynamics of vacancy and impurity adsorption at interfaces and grain boundaries (GBs) in solids is considered. Theoretical expressions are derived for the GB/interface free energy change caused by various levels of vacancy or impurity adsorption. This information is used to predict the behavior of vacancies at interfaces and GBs in a stress gradient and to forecast the effect of impurities on GB fracture strength. The latter predictions provide an interpretation of intergranular fracture behavior in terms of impurity adsorption and GB structural parameters such as GB width and value. 相似文献
20.
Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation 下载免费PDF全文
The microstructures of titanium(Ti), an attractive tritium(T) storage material, will affect the evolution process of the retained helium(He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics(MD) simulation for the bulk hcp-Ti system and the system with grain boundary(GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic(the diffusion coefficient of the [0001] direction is higher than that of the basal plane),as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary(TB) can serve as an effective trapped region for He.The TB accelerates diffusion of He in the direction perpendicular to the twinning direction(TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. 相似文献