首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations"--a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4'-bipyridinium (bipy2+) unit--located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+- > bipy2+ > -NH-. Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.  相似文献   

2.
Two novel multilevel switchable [2]rotaxanes containing an ammonium and a triazole station have been constructed by a CuI‐catalyzed azide–alkyne cycloaddition reaction. The macrocycle of [2]rotaxane containing a C6‐chain bridge between the two hydrogen bonding stations exhibits high selectivity for the ammonium cation in the protonated form. Interestingly, the macrocycle is able to interact with the two recognition stations when the bridge between them is shortened. Upon deprotonation of both [2]rotaxanes, the macrocycle moves towards the triazole recognition site due to the hydrogen‐bond interaction between the triazole nitrogen atoms and the amide groups in the macrocycle. Upon addition of chloride anion, the conformation of [2]rotaxane is changed because of the cooperative recognition of the chloride anion by a favorable hydrogen‐bond donor from both the macrocycle isophthalamide and thread triazole CH proton.  相似文献   

3.
A series of [2]rotaxanes containing succinamide and naphthalimide hydrogen-bonding stations for a benzylic amide macrocycle is described. Electrochemical reduction and oxidation of the naphthalimide group alters its ability to form hydrogen bonds to the macrocycle to such a degree that redox processes can be used to switch the relative macrocycle-binding affinities of the two stations in a rotaxane by over 8 orders of magnitude. The structure of the neutral [2]rotaxane in solution is established by (1)H NMR spectroscopy and shows that the macrocycle exhibits remarkable positional integrity for the succinamide station in a variety of solvents. Cyclic voltammetry experiments allow the simultaneous stimulation and observation of a redox-induced dynamic process in the rotaxane which is both reversible and cyclable. Model compounds in which various conformational and co-conformational changes are prohibited demonstrate unequivocally that the redox response is the result of shuttling of the macrocycle between the two stations. At room temperature in tetrahydrofuran the electrochemically induced movement of the macrocycle between the two stations takes approximately 50 micros.  相似文献   

4.
We have investigated the dynamics of the hydrogen bonds that connect the components of a [2]rotaxane in solution. In this rotaxane, the amide groups in the benzylic-amide macrocycle and the succinamide thread are connected by four equivalent N-H???O=C hydrogen bonds. The fluctuations of these hydrogen bonds are mirrored by the frequency fluctuations of the NH-stretch modes, which are probed by means of three-pulse photon-echo peak shift spectroscopy. The hydrogen-bond fluctuations occur on three different time scales, with time constants of 0.1, 0.6, and ≥200 ps. Comparing these three time scales to the ones found in liquid formamide, which contains the same hydrogen-bonded amide motif but without mechanical constraints, we find that the faster two components, which are associated with small-amplitude fluctuations in the strength of the N-H???O=C hydrogen bonds, are very similar in the liquid and the rotaxane. However, the third component, which is associated with the breaking and subsequent reformation of hydrogen bonds, is found to be much slower in the rotaxane than in the liquid. It can be concluded that the mechanical bonding in a rotaxane does not influence the amplitude and time scale of the small-amplitude fluctuations of the hydrogen bonds, but strongly slows down the complete dissociation of these hydrogen bonds. This is probably because in a rotaxane breaking of the macrocycle-axle contacts is severely hindered by the mechanical constraints. The hydrogen-bond dynamics in rotaxane-based molecular machines can therefore be regarded as liquidlike on a time scale 1 ps and less, but structurally frozen on longer (up to at least 200 ps) time scales.  相似文献   

5.
In pursuit of a neutral bistable [2]rotaxane made up of two tetraarylmethane stoppers--both carrying one isopropyl and two tert-butyl groups located at the para positions on each of three of the four aryl rings--known to permit the slippage of the pi-electron-donating 1,5-dinaphtho[38]crown-10 (1/5DNP38C10) at the thermodynamic instigation of pi-electron-accepting recognition sites, in this case, pyromellitic diimide (PmI) and 1,4,5,8-naphthalenetetracarboxylate diimide (NpI) units separated from each other along the rod section of the rotaxane's dumbbell component, and from the para positions of the fourth aryl group of the two stoppers by pentamethylene chains, a modular approach was employed in the synthesis of the dumbbell-shaped compound NpPmD, as well as of its two degenerate counterparts, one (PmPmD) which contains two PmI units and the other (NpNpD) which contains two NpI units. The bistable [2]rotaxane NpPmR, as well as its two degenerate analogues PmPmR and NpNpR, were obtained from the corresponding dumbbell-shaped compounds NpPmD, PmPmD, and NpNpD and 1/5DNP38C10 by slippage. Dynamic 1H NMR spectroscopy in CD2Cl2 revealed that shuttling of the 1/5DNP38C10 ring occurs in NpNpR and PmPmR, with activation barriers of 277 K of 14.0 and 10.9 kcal mol(-1), respectively, reflecting a much more pronounced donor-acceptor stabilizing interaction involving the NpI units over the PmI ones. The photophysical and electrochemical properties of the three neutral [2]rotaxanes and their dumbbell-shaped precursors have also been investigated in CH2Cl2. Interactions between 1/5DNP38C10 and PmI and NpI units located within the rod section of the dumbbell components of the [2]rotaxane give rise to the appearance of charge-transfer bands, the energies of which correlate with the electron-accepting properties of the two diimide moieties. Comparison between the positions of the visible absorption bands in the three [2]rotaxanes shows that, in NpPmR, the major translational isomer is the one in which 1/5DNP38C10 encircles the NpI unit. Correlations of the reduction potentials for all the compounds studied confirm that, in this non-degenerate [2]rotaxane, one of the translational isomers predominates. Furthermore, after deactivation of the NpI unit by one-electron reduction, the 1/5DNP38C10 macrocycle moves to the PmI unit. Li+ ions have been found to strengthen the interaction between the electron-donating crown ether and the electron-accepting diimide units, particularly the PmI one. Titration experiments show that two Li+ ions are involved in the strengthening of the donor-acceptor interaction. Addition of Li+ ions to NpPmR induces the 1/5DNP38C10 macrocycle to move from the NpI to the PmI unit. The Li+-ion-promoted switching of NpPmR in a 4:1 mixture of CD2Cl2 and CD3COCD3 has also been shown by 1H NMR spectroscopy to involve the mechanical movement of the 1/5DNP38C10 macrocycle from the NpI to the PmI unit, a process that can be reversed by adding an excess of [12]crown-4 to sequester the Li+ ions.  相似文献   

6.
We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio- and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15% yields, respectively. X-ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphinamide, -thiophosphinamide, and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid-state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.  相似文献   

7.
Leigh DA  Thomson AR 《Organic letters》2006,8(23):5377-5379
[Structure: see text] Protonation controls the location of a dual binding mode macrocycle in a [2]rotaxane. In the neutral form, amide-amide hydrogen bonds hold the macrocycle over a dipeptide residue; when the thread is protonated, polyether-ammonium cation interactions dominate and the macrocycle changes position.  相似文献   

8.
High‐yield, straightforward synthesis of two‐ and three‐station [2]rotaxane molecular machines based on an anilinium, a triazolium, and a mono‐ or disubstituted pyridinium amide station is reported. In the case of the pH‐sensitive two‐station molecular machines, large‐amplitude movement of the macrocycle occurred. However, the presence of an intermediate third station led, after deprotonation of the anilinium station, and depending on the substitution of the pyridinium amide, either to exclusive localization of the macrocycle around the triazolium station or to oscillatory shuttling of the macrocycle between the triazolium and monosubstituted pyridinium amide station. Variable‐temperature 1H NMR investigation of the oscillating system was performed in CD2Cl2. The exchange between the two stations proved to be fast on the NMR timescale for all considered temperatures (298–193 K). Interestingly, decreasing the temperature displaced the equilibrium between the two translational isomers until a unique location of the macrocycle around the monosubstituted pyridinium amide station was reached. Thermodynamic constants K were evaluated at each temperature: the thermodynamic parameters ΔH and ΔS were extracted from a Van′t Hoff plot, and provided the Gibbs energy ΔG. Arrhenius and Eyring plots afforded kinetic parameters, namely, energies of activation Ea, enthalpies of activation ΔH, and entropies of activation ΔS. The ΔG values deduced from kinetic parameters match very well with the ΔG values determined from thermodynamic parameters. In addition, whereas signal coalescence of pyridinium hydrogen atoms located next to the amide bond was observed at 205 K in the oscillating rotaxane and at 203 K in the two‐station rotaxane with a unique location of the macrocycle around the pyridinium amide, no separation of 1H NMR signals of the considered hydrogen atoms was seen in the corresponding nonencapsulated thread. It is suggested that the macrocycle acts as a molecular brake for the rotation of the pyridinium–amide bond when it interacts by hydrogen bonding with both the amide NH and the pyridinium hydrogen atoms at the same time.  相似文献   

9.
A dinuclear self-assembled cationic macrocycle based on Pt(II)-N(pyridine) coordinative bonds and having competitive triflate anions, as metal counterions, is used in the construction of [2]rotaxane and [2]pseudorotaxane architectures assisted by hydrogen bonding. The kinetic lability of the Pt(II)-N(pyridine) coordinative bond controls the dynamics of the [2]rotaxane.  相似文献   

10.
The novel tridentate azaoxa macrocycle [O(NH)2], 3,3-dimethyl-1,5-diaza-8-oxacyclodecane, can be singly or doubly lithiated with (n)BuLi at the secondary amine N atoms, giving [O(NH)N]Li and [O(N)2]Li2, respectively, and further elaborated with introduction of TMS substituents via reaction with (TMS)Cl. Aminolysis of [Ti(NMe2)2Cl2] or [Zr(NR2)2Cl2(THF)2] with [O(NH)2] in toluene gave the distorted octahedral M[O(NH)N](NR2)Cl2 (M = Ti, R = Me; M = Zr, R = Me or Et), in which the macrocycle functions as a monoanionic ligand via an amido, an amine, and an ether functionality. Salt metathesis of [Zr(NEt2)2Cl2(THF)2] with [O(NH)N]Li in toluene afforded Zr[(O(NH)N)](NEt2)2Cl, the structure of which also confirms tridentate macrocycle coordination via one amido, one amine, and one ether group; in contrast, analogous salt metathesis involving [Zr(NEt2)2Cl2(THF)2] and [O(N)2Li2] gave the "sandwich" complex [(ON2)2Zr], with the macrocycle behaving as a dianionic ligand (Porter, R. M.; et al. Dalton Trans. 2005, 427). Finally, treatment of [O(NH)2] with AlMe3 gave the simple donor-acceptor adduct [O(NH)2]AlMe3, which resisted alkanolysis by prolonged heating. In the presence of MAO the new zirconium, titanium, and aluminum complexes show low activity in the polymerization of ethylene.  相似文献   

11.
A rotaxane, containing both oligo ethylene glycol and secondary ammonium cation binding sites for a threaded crown ether, has been prepared. 1H NMR spectroscopy has been used to show that the crown ether moiety in the rotaxane undergoes acid-base and alkali metal cation dependent switch from binding at the ammonium cation position to cooperative binding to the metal cation at the oligo ethylene glycol site.  相似文献   

12.
We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.  相似文献   

13.
This paper reports the synthesis and study of new pH-sensitive DB24C8-based [2]rotaxane molecular shuttles that contain within their axle four potential sites of interaction for the DB24C8: ammonium, amine, Weinreb amide, and ketone. In the protonated state, the DB24C8 lay around the best ammonium site. After either deprotonation or deprotonation-then-carbamoylation of the ammonium, different localizations of the DB24C8 were seen, depending on both the number and nature of the secondary stations and steric restriction. Unexpectedly, the results indicated that the Weinreb amide was not a proper secondary molecular station for the DB24C8. Nevertheless, through its methoxy side chain, it slowed down the shuttling of the macrocycle along the threaded axle, thereby partitioning the [2]rotaxane into two translational isomers on the NMR timescale. The ketone was successfully used as a secondary molecular station, and its weak affinity for the DB24C8 was similar to that of a secondary amine.  相似文献   

14.
A heteroditopic [2]rotaxane consisting of a calix[4]diquinone–isophthalamide macrocycle and 3,5‐bis‐amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane’s interlocked cavity together with Na+, K+, NH4+ and Ba2+ cation recognition capabilities are elucidated by 1H NMR and UV‐visible spectroscopic titration experiments. Upon binding of Ba2+, molecular displacement of the axle’s positively charged pyridinium group from the rotaxane’s macrocyclic cavity occurs, whereas the monovalent cations Na+, K+ and NH4+ are bound without causing significant co‐conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.  相似文献   

15.
[reaction: see text] We have synthesized a [2]rotaxane from a crown-ether-like macrocycle that undergoes ring opening and closing through cleavage and formation of imino bonds of a salen moiety; the self-assembly of this macrocycle and a dumbbell-shaped rodlike component, followed by addition of nickel acetate, afforded, after counterion exchange, a [2]rotaxane that is stabilized through coordination of the Ni ion to the macrocycle's salen moiety.  相似文献   

16.
We report on a switchable rotaxane molecular shuttle that features a pseudo‐meso 2,5‐disubstituted pyrrolidine catalytic unit on the axle whose local symmetry is broken according to the position of a threaded benzylic amide macrocycle. The macrocycle can be selectively switched (with light in one direction; with catalytic acid in the other) with high fidelity between binding sites located to either side of the pyrrolidine unit. The position of the macrocycle dictates the facial bias of the rotaxane‐catalyzed conjugate addition of aldehydes to vinyl sulfones. The pseudo‐meso non‐interlocked thread does not afford significant selectivity as a catalyst (2–14 % ee), whereas the rotaxane affords selectivities of up to 40 % ee with switching of the position of the macrocycle changing the handedness of the product formed (up to 60 % Δee).  相似文献   

17.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

18.
《化学:亚洲杂志》2017,12(12):1381-1390
In this study, we synthesized [2]rotaxanes possessing three recognition sites—a dialkylammonium, an alkylarylamine, and a tetra(ethylene glycol) stations—in their dumbbell‐like axle component and dibenzo[24]crown‐8 (DB24C8) as their macrocyclic component. These [2]rotaxanes behaved as four‐state molecular shuttles: i) under acidic conditions, the DB24C8 unit encircled both the dialkylammonium and alkylarylammonium stations; ii) under neutral conditions, the dialkylammonium unit was the predominant station for the DB24C8 component; iii) under basic conditions, when both ammonium centers were deprotonated, the alkylarylamine unit became a suitable station for the DB24C8 component; and iv) under basic conditions in the presence of an alkali‐metal cation, the tetra(ethylene glycol) unit recognized the DB24C8 component through cooperative binding of the alkali‐metal ion. In addition, we observed that the [2]rotaxanes exhibited selective recognition for metal cations. These shuttling motions of the macrocyclic component proceeded reversibly.  相似文献   

19.
The effect of varying the size of the macrocycle component on the formation of anion templated imidazolium interpenetrated assemblies is investigated. Two different approaches to reducing the macrocycle size are undertaken and the stabilities of the resulting pseudorotaxanes incorporating substituted imidazolium threading components studied using (1)H NMR spectroscopy. Novel imidazolium axle containing interlocked rotaxane host structures are synthesised using chloride anion templated amide condensation and 'stoppering' methods, and the anion recognition properties of the 'stoppered' rotaxane investigated.  相似文献   

20.
The development of an acyclic chloride anion template in which the chloride anion is coordinatively unsaturated and available for subsequent complexation to various hydrogen bond donating components is described. This template orients a neutral hydrogen bond donating ligand and a pyridinium cation orthogonally to one another. Incorporation of second-sphere interactions between the ligand and the pyridinium cation improved the efficacy of the chloride template. These results were exploited in the construction of a chloride anion-templated [2]rotaxane which, after anion template removal, was studied with regards to its anion recognition properties. Encirclement of the neutral macrocycle around the dumbbell-shaped pyridinium cation in the [2]rotaxane produced a dramatic increase in its selectivity for chloride anions as compared to the noninterlocked cation. This is interpreted as a function of the anion template used to create the [2]rotaxane superstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号