首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quadratic, cubic and semi-diagonal quartic force field of nitric acid has been calculated at the CCSD(T) level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. It is found that the A and B semi-experimental equilibrium rotational constants of the 18O isotopologues (for which the rotation of principal axes is large) cannot be accurately reproduced. This problem is discussed and a remedy is proposed. Finally, the semi-experimental structure is in agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of at least quadruple-ζ quality and a core correlation correction, except for the long NO single bond for which the CCSD(T) value is too short due to inadequate treatment of electron correlation. The empirical structures are also determined and their accuracy is discussed. The best equilibrium structure is: re(NOsyn) = 1.209(1) Å, re(NOanti) = 1.194(1) Å, re(NO) = 1.397(1) Å, re(OH) = 0.968(1) Å, (ONOsyn) = 115.8(1)°, (ONOanti) = 114.2(1)° and (NOH) = 102.2(1)°.  相似文献   

2.
We present the results of a study of structural and superconducting properties of polycrystalline Nb thin films (200 Å, 300 Å, 400 Å, 700 Å and 1000 Å) and Nb/Cu bilayers (300 Å/300 Å and 400 Å/300 Å) prepared on Si substrates by ion beam sputtering at room temperature. The thicknesses, roughnesses at the surfaces and interfaces were determined by X-ray reflectivity whereas the grain sizes were determined from grazing incidence X-ray diffraction and transmission electron microscopic studies. The superconducting transition temperature (TC) of Nb thin films are smaller than TC of bulk Nb. The Nb-200 Å sample does not show TC down to 2.3 K. The average size of the grains varies from 42 Å for Nb-200 Å sample to 69 Å for Nb-1000 Å sample. Our results show that the TC in these polycrystalline films is not only limited by its thickness but also by the size of the grains. The Nb films deposited in situ on the Cu layer (Nb/Cu) show a marginal increase in average sizes of the grains as compare to their respective values in Nb films of same thicknesses. As a result a marginal increase in TC of these films is also observed. The maximum decrease in TC due to oxygen intake during deposition should be about 0.5 K from its bulk value (9.28 K). We have attributed the large decrease in TC in our case on the basis of decrease in the Debye temperature and density of states at the Fermi level for Nb thin films as compared to their respective values for bulk Nb.  相似文献   

3.
We have calculated the three-dimensional potential energy surfaces for the 1 2A′ and 1 2A″ states of BrCN+ at the MR-SDCI_DK+Q/[QZP-ANO-RCC (Br, C, N)] level of theory, where MR-SDCI_DK means ‘multi-reference single and double excitation configuration interaction calculation with Douglas-Kroll Hamiltonian.’ These ab initio potential energy surfaces have a common minimum (corresponding to the state) at a linear equilibrium structure with re(Br-C) = 1.735 Å and re(C-N) = 1.199 Å. Variational RENNER calculations yield a zero-point averaged structure (with the structural parameters calculated as expectation values over rovibrational wavefunctions) with 〈r(Br-C)〉0 = 1.739 Å, 〈r(C-N)〉0 = 1.204 Å, and 〈∠(Br-C-N)〉0 = 172(4)°. A severe Fermi resonance between 2ν2 and ν3 has been found theoretically for the 2A″ potential energy surface. Comparing the ab initio zero-point averaged structure with a recent, experimentally derived r0 structure, it is concluded that the effects of large-amplitude bending motion should be taken into account explicitly in the process of deriving the r0 structure from the experimental values of the rotational constants. The electronic structure of BrCN+ has also been discussed.  相似文献   

4.
We report an ab initio calculation, at the MR-SDCI + Q + Erel/[Roos ANO (Fe), aug-cc-pVQZ (C, N)] level of theory, of the potential energy surface for 6Δi FeNC. From the ab initio results, we have computed values for the standard spectroscopic parameters of FeN12C and FeN13C. Analytical representations of the potential energy surfaces have been fitted through the ab initio points, and the resulting functions have been used for directly solving the rotation-vibration Schrödinger equation by means of the MORBID program and by means of an adiabatic-separation method. For 6Δi FeNC, our ab initio calculations show that the equilibrium structure is linear with re (Fe-N) = 1.9354 Å and re (N-C) = 1.1823 Å. We find that the bending potential is very shallow, and the MORBID calculations show that the zero-point averaged structure is bent with the expectation values 〈r (Fe-N)〉 = 1.9672 Å, 〈r(N-C)〉 = 1.1866 Å, and . The experimentally derived bond length r0 (N-C) = 1.03(8) Å reported for 6Δi FeNC by Lie and Dagdigian [J. Chem. Phys. 114 (2001) 2137-2143] is much shorter than the corresponding ab initio re-value and the averaged value from MORBID. Our calculations suggest that this discrepancy is caused by the inadequate treatment of the large-amplitude bending motion of 6Δi FeNC. It would appear that for floppy triatomic molecules such as FeNC, r0-values have little physical meaning, at least when they are determined with the effects of the large-amplitude bending motion being ignored, i.e., under the assumption that the r0 structure is linear.  相似文献   

5.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

6.
The electron temperature (Te) of positive dc corona plasma in Ar/O2 atmosphere was diagnosed, and plasma decomposition of toluene/benzene was studied in a razor–plate reactor. Experimental results revealed that Te would increase with corona current until it reached a peak value, and then decrease; the volume fraction of Ar (φAr) in Ar/O2 mixed gas also influenced Te, the higher φAr, the lower Te. Though the decomposed volume fraction of toluene/benzene was positively related to the input power, the decomposition efficiency did not monotonically increase with the specific energy density. The highest energy yield reached 3.8 g-toluene/kWh and 2.4 g-benzene/kWh, respectively.  相似文献   

7.
A theoretical method for studying the inter-relation between electron and molecule structure is proposed on the basis of the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for d5 configuration ion in a trigonal ligand-field. As an application, the local distortion structure of (FeCl6)3- coordination complex for Fe3+ ions doped into CdCl2 is investigated. Both the second-order zero-field splitting parameter and fourth-order zero-field splitting parameter are considered simultaneously in the structural investigation. By diagonalizing the complete energy matrices, the local structure distortion parameters ΔR=−0.24 Å, Δθ=2.137° at 26 K and ΔR=−0.203 Å, Δθ=2.515° at 225 K for Fe3+ ions in CdCl2 are determined. These results elucidate a microscopic origin of various ligand-field parameters which are usually used empirically for the interpretation of electron paramagnetic resonance results. It is found that the theoretical results are in good agreement with the experimental values.  相似文献   

8.
Forbidden lines arising from magnetic dipole (M1) transitions in ground and 2s2p excited configurations of highly charged Al, Ar, Ti and Fe ions have been observed in the large helical device (LHD). Argon was puffed using a piezo-electronic valve and other metallic materials were injected using an impurity pellet injector into LHD plasma for the observation. The M1 transitions in vacuum ultraviolet (VUV) and visible regions are identified by analyzing their Doppler broadening, temporal intensity behavior and spatial intensity distribution. Wavelengths of these M1 transitions are determined with high accuracy and compared with previous experimental and calculated values. The line intensity ratios of the M1 transition to the allowed (E1) transition such as (ArX 5533 Å/165 Å, TiXIV 2118 Å/122 Å and FeXVIII 975 Å/94 Å) and 2s2p - (ArXV 5944 Å/221 Å) are measured as a function of electron density. Results on the ArX and ArXV are compared with a simple level-population calculation. As a result, the density dependence of the ratio is well explained mainly by a competition between two decay processes of the collisional de-excitation and the radiative decay due to the forbidden line emission, although a clear discrepancy between the experimental and calculated absolute values appears for the ArX ratio. Contribution of fast proton impact excitation, which is brought by 180 keV neutral beam injection (NBI) for plasma heating, is also analyzed with the calculation for the F-like ions of ArX, TiXIV and FeXVIII.  相似文献   

9.
The r.f. discharge of sputtering silicon target using argon-oxygen-nitrogen plasma was investigated by optical emission spectroscopy. Electronic temperature (Te) and emission line intensity were measured for different plasma parameters: pressure (from 0.3 to 0.7 Pa), power density (0.6-5.7 W cm−2) and gas composition. At high oxygen concentration in the plasma, both Te and the target self-bias voltage (Vb) steeply decrease. Such behaviour traduces the target poisoning phenomenon. In order to control the deposition process, emission line intensity of different species present in the plasma were compared to the ArI (λ = 696.54 nm) line intensity and then correlated to the film composition analysed by Rutherford Backscattering Spectroscopy.  相似文献   

10.
The ignition delay times of diluted hydrogen/reference gas (92% methane, 8% ethane)/O2/Ar mixtures with hydrogen contents of 0%, 40%, 80% and 100% were determined in a high-pressure shock tube at equivalence ratios ? = 0.5 and 1.0 (dilution 1:5). The temperature range was 900 K ? T ? 1800 K at pressures of about 1, 4 and 16 bar.The reference gas and the 40% hydrogen/60% reference gas data showed typical characteristics of hydrocarbon systems and can be represented by:
  相似文献   

11.
Atomic Cl was generated by pulsed laser photolysis at 193 nm of CCl4, and was monitored by time resolved resonance fluorescence in the course of reaction with excess C2H2, diluted in Ar bath gas at pressures from 13 to 800 mbar. At 288 K simple pseudo first order kinetics were observed. Over 365-430 K bi-exponential decays were obtained, because of equilibration between the β-chlorovinyl adduct and the reactants. The ratios of forward and reverse rate constants yield ΔfH298(CHCHCl) = 274.0 ± 1.0 kJ mol−1 via a Third-Law analysis of the carbon-chlorine bond strength. The thermochemistry compares well with that predicted by an initio theory. The effective second-order rate constant was pressure dependent and was analyzed using Troe’s unimolecular formalism. Over the whole temperature range the low-pressure limiting value for addition, with Ar bath gas, is given by k0 = 4.1 × 10−30 (T/300 K)−2.47 cm6 molecule−2 s−1.  相似文献   

12.
The shapes of the astrophysically interesting neutral manganese (Mn I) resonance spectral lines (403.075, 403.306, 403.448, 279.481, 279.826 and 280.108 nm) have been observed together with six other prominent Mn I lines in the laboratory helium plasma at a 47 000 K electron temperature and electron density. With these plasma parameters the Stark broadening has been found to be an important mechanism in the Mn I line shape formation. Our measured Mn I Stark widths (W) are the first data in the literature. Stark widths are compared with line hyperfine structure splittings (Δhfs). At above mentioned helium plasma conditions the line broadening due to hyperfine structure splitting of the lines is less than that of the Stark and Doppler broadening for the case of the Mn I lines under investigation. We estimate that at electron densities below and electron temperatures below 4000 K the components in the hyperfine structure play an important role in the mentioned Mn I line shape formation.  相似文献   

13.
Nonlinear sequence transforms are known to predict the limits of a sequence, convergent or divergent. The power of these nonlinear transforms, especially the Levin-like transforms in predicting the subsequent terms of a sequence or series is investigated. If a particular sequence transform can predict one extra term of a series or sequence, then by including that term one can build a higher order transform and predict the subsequent term. Repeating the procedure one can, in principle, predict all the terms of the sequence and, in this sense, a complete knowledge of the sequence can be obtained. An analysis of the Levin-like transforms reveals that this is possible for a large number of test sequences, even though these transforms do not sum them exactly. We then apply this method to the divergent power series involved in a number of diverse physical problems, namely the ground state energy of the hydrogen atom in a magnetic field (the Zeeman problem), the ground state energy of the quartic anharmonic oscillator, the expansion of thermodynamic properties of a solid in terms of the moments of the frequency spectrum, the Ising model and the excluded volume effect in polymers. We also apply the method to problems in quantum electrodynamics (QED), namely to the perturbation series for the anomalous magnetic moment of the electron and the muon and to the ratios R (e+e) = σtot (e+e → hadrons) /σ (e+e → μ+μ) and which have played instrumental roles in the development of quantum chromodynamics (QCD). In all these cases it is observed that the Levin-like transforms can be used to predict the subsequent terms of the sequences with high accuracy and these predicted terms can be included to calculate the physical properties with a greater accuracy by using higher order transforms. Thus, such predictions are expected to be very helpful in situations where the evaluation of the higher order terms of a sequence or series becomes extremely difficult as is the case in many physical situations.  相似文献   

14.
The Born-Oppenheimer (BO) equilibrium molecular structure () of cis-methyl formate has been determined at the CCSD(T) level of electronic structure theory using Gaussian basis sets of at least quadruple-ζ quality and a core correlation correction. The quadratic, cubic and semi-diagonal quartic force field in normal coordinates has also been computed at the MP2 level employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure () has been derived from experimental ground-state rotational constants and the lowest-order rovibrational interaction parameters calculated from the ab initio cubic force field. To determine structures, it is important to start from accurate ground-state rotational constants. Different spectroscopic methods, applicable in the presence of internal rotation and used in the literature to obtain “unperturbed” rotational constants from the analysis and fitting of the spectrum, are reviewed and compared. They are shown to be compatible though their precision may be different. The and structures are in good agreement showing that, in the particular case of cis-methyl formate, the methyl torsion can still be treated as a small-amplitude vibration. The best equilibrium structure obtained for cis-methyl formate is: r(Cm-O) = 1.434 Å, r(O-Cc) = 1.335 Å, r(Cm-Hs) = 1.083 Å, r(Cm-Ha) = 1.087 Å, r(Cc-H) = 1.093 Å, r(CO) = 1.201 Å, (COC) = 114.4°, (CCHs) = 105.6°, (CCHa) = 110.2°, (OCH) = 109.6°, (OCO) = 125.5°, and τ(HaCOC) = 60.3°. The accuracy is believed to be about 0.001 Å for the bond lengths and 0.1° for the angles.  相似文献   

15.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

16.
We previously derived a simple equation for solving time-dependent Bloch equations by a matrix operation. The purpose of this study was to present a theoretical and numerical consideration of the longitudinal (R = 1/T) and transverse relaxation rates in the rotating frame (R = 1/T), based on this method. First, we derived an equation describing the time evolution of the magnetization vector (M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame (M(t)) by taking the inner product of M(t) and the eigenvector with the smallest eigenvalue in modulus, and then we obtained the transverse magnetization vector in the rotating frame (M(t)) by subtracting M(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived the exact solutions for R and R from the eigenvalues, and compared them with those obtained numerically from M(t) and M(t), respectively. There was excellent agreement between them. From the exact solutions for R and R, R was found to be given by R2ρ = (2R2 + R1)/2 − R1ρ/2, where R1 and R2 denote the conventional longitudinal and transverse relaxation rates, respectively. We also derived M(t) and M(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a 2-pool chemical exchange model, and we compared the R and R values obtained from the eigenvalues and those obtained numerically from M(t) and M(t). There was also excellent agreement between them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse relaxations in the rotating frame and for analyzing the contrast mechanisms in T- and T-weighted MRI.  相似文献   

17.
In this paper it is demonstrated that the second phase transition of Gd2In intermetallic compound gets eliminated by diluting Gd2−x(LaY)xIn at a critical composition of x=0.5. The exchange coupling for intra-cluster interactions is estimated in the correlation ranges of 3.3 Å<RC<3.6 Å (anisotropic source) and for inter-cluster interactions in the ranges of RC>4 Å where the correlation length is defined as . The sign and strength of the exchange coupling are identified by the eigenvalues λ(k) and are obtained from zeros of the 4×4 matrix of JijRR along the three directions of the reciprocal lattice for each dilution (x=0.25, 0.5, 0.75, 1). The transition temperature is calculated using the minimum eigenvalue λmin (k=0, π) which agrees with the experiment. Magnetic field and temperature dependence of the magnetization and electrical resistivity measurements show that: (i) Elimination of the AFM phase is caused by breaking of some FM short-range exchange couplings, and (ii) Conduction electrons order antiferromagnetically at low temperatures and ferromagnetically at high temperatures.  相似文献   

18.
R. Friedberg 《Annals of Physics》2008,323(5):1087-1105
We propose that the smallness of the light quark masses is related to the smallness of the T (i.e. CP) violation in hadronic weak interactions. Accordingly, for each of the two quark sectors (“upper” and “lower”) we construct a 3 × 3 mass matrix in a bases of unobserved quark states, such that the “upper” and “lower” basis states correspond exactly via the W± transitions in the weak interaction. In the zeroth approximation of our formulation, we assume T conservation by making all matrix elements real. In addition, we impose a “hidden symmetry” (invariance under simultaneous translations of all three basis quark states in each sector), which ensures a zero mass eigenstate in each sector.Next, we simultaneously break the hidden symmetry and T invariance by introducing a phase factor eiχ in the interaction for each sector. The Jarlskog invariant JCKM, as well as the light quark masses are evaluated in terms of the parameters of the model. Comparing formulas, we find that most unknown factors drop out, resulting in a simple relation with , to leading order in χ and ms/mb, with A, λ the Wolfenstein parameters. (Because of the large top quark mass, the contribution from upper quark sector can be neglected.) Setting JCKM = 3.08 × 10−5, mb = 4.7 GeV (1s mass), ms = 95 MeV, A = 0.818, and λ = 0.227, we find , consistent with the accepted value md = 3 − 7 MeV.We make a parallel proposal for the lepton sectors. With the hidden symmetry and in the approximation of T invariance, both the masses of e and ν1 are zero. The neutrino-mapping matrix Vν is shown to be of the same Harrison-Perkins-Scott form which is in agreement with experiments. We also examine the correction due to T violation, and evaluate the corresponding Jarlskog invariant Jν.  相似文献   

19.
A Ti-rich oxide, (Ti0.50Zr0.26Mg0.14Cr0.10)∑=1.0O1.81, was synthesized at 8.8 GPa and 1600 °C using a multi-anvil apparatus. Its crystal structure at ambient conditions and compressibility up to 10.58 GPa were determined with single-crystal X-ray diffraction. This high-pressure phase is isomorphous with cubic zirconia (fluorite-type) with space group Fm3¯m and unit-cell parameters a=4.8830(5) Å and V=116.43(4) Å3. Like stabilized cubic zirconia, the structure of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is also relaxed, with all O atoms displaced from the (, , ) position along 〈1 0 0〉 by 0.319 Å and all cations from the (0, 0, 0) position along 〈1 1 1〉 by 0.203 Å. No phase transformation was detected within the experimental pressure range. Fitting the high-pressure data (V vs. P) to a third-order Birch-Murnaghan EOS yields K0=164(4) GPa, K′=4.3(7), and V0=116.38(3) Å3. The bulk modulus of (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 is significantly lower than that (202 GPa) determined experimentally for cubic TiO2 or that (~210 GPa) estimated for cubic ZrO2. This study demonstrates that cubic TiO2 may also be obtained by introducing various dopants, similar to the way cubic zirconia is stabilized below 2370 °C. Furthermore, (Ti0.50Zr0.26Mg0.14Cr0.10)O1.81 has the greatest ratio of Ti4+ content vs. vacant O2− sites of all doped cubic zirconia samples reported thus far, making it a more promising candidate for the development of electrolytes in solid oxide fuel cells.  相似文献   

20.
Monodeuterated diacetylene (HCCCCD) and its 13C-substituted species H13CCCCD, HC13CCCD, HCC13CCD, and HCCC13CD were investigated by Fourier transform microwave spectroscopy. The D nuclear quadrupole splittings were almost completely resolved. For H13CCCCD hyperfine splittings caused by the anisotropic nuclear spin-spin interaction between the H and 13C nuclei were also observed. The analysis yielded rotational constants, centrifugal distortion constants, and the constants for the nuclear quadrupole coupling and anisotropic nuclear spin-spin interaction. The substitution structure of HCCCCD was calculated as follows: rs(C-H) = 1.056054(39) Å, rs(CC) = 1.208631(4) Å, rs(C-C) = 1.374117(6) Å, rs(CC) = 1.208116(4) Å, and rs(C-D) = 1.056231(17) Å, in the order of the arrangement of the bonds. A rough estimate of the equilibrium structure is also presented. The eQq constant for the deuterium nucleus is 0.2061(4) MHz. The anisotropic 13C-H spin-spin interaction constant was experimentally determined for the first time as b = −29.2(15) kHz, which is defined as the coefficient of (3I2zI3z − I2 · I3), where I2 and I3 denote the H and 13C nuclear spins, respectively, and I2z and I3z their components along the molecular axis. The observed b constant is not accounted for by the direct magnetic dipole-dipole interaction only, suggesting a significant contribution from indirect anisotropic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号