共查询到12条相似文献,搜索用时 0 毫秒
1.
L.H. Liu 《Journal of Quantitative Spectroscopy & Radiative Transfer》2003,78(2):227-233
To take the local thermal nonequilibrium between particles and the nonuniformity of temperature within a single particle into account, a concept of multi-scale modeling of radiative transfer is presented. Particles are considered to interact with thermal radiation on both micro-scale of a single particle and meso-scale of a particle cell to produce radiative source term at the local or meso-scale level of a particle cell for the modeling of radiative transfer at macro-scale of overall particle system. The accurate modeling of radiative transfer in particle polydispersions are related to the modeling of radiative transfer in following three different scales: macro-scale of the overall particle system, meso-scale of particle cell, and micro-scale of single particle. Two examples are taken to show the necessity of multi-scale modeling for radiative transfer in particle polydispersions. The results show that omitting local thermal nonequilibrium and nonuniformity will result in errors for the solution of radiative heat transfer to some extent, and the multi-scale modeling is necessary for the radiative transfer in particle system with large local thermal nonequilibrium and nonuniformity. 相似文献
2.
Rafael Cortell Bataller 《Physics letters. A》2008,372(14):2431-2439
This Letter presents a numerical study of the flow and heat transfer of an incompressible FENE-P fluid over a non-isothermal surface. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of the thermal radiation are considered in the energy equation, and the variations of dimensionless surface temperature and dimensionless surface temperature gradient, as well as the heat transfer characteristics with various physical parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with prescribed surface temperature (PST case) and (ii) the sheet with prescribed heat flux (PHF case). Moreover, the mechanical characteristics of the corresponding flow are also presented. 相似文献
3.
4.
应用商业软件ANSYS CFX计算了等离子体热通量和液态锂流速对自由流动液态锂温度分布的影响。计算结果表明,导向槽中心附近液态锂温度较高,冷却水入口和出口对应位置液态锂温度最低。液态锂出口温度随着等离子体热通量的增大而线性升高,冷却水流速为1.5m·s-1,热通量分别为0.1MW·m-2和1MW·m-2时,液态锂在出口处对应的温度分别为255.3°C和458.6°C。增大液态锂流速,导向槽内液态锂的温度逐渐降低,但温度变化的幅度较小。计算结果对液态锂回路安全稳定运行提供了一定参考。 相似文献
5.
S.A. Rukolaine M.G. Vasilyev V.M. Mamedov 《Journal of Quantitative Spectroscopy & Radiative Transfer》2004,84(4):371-382
This paper presents a new numerical scheme of the discrete ordinates method for the solution of axisymmetric radiative transfer problems in irregular domains filled by media with opaque and transparent diffuse and specular (Fresnel) boundaries and interfaces. New test problems of radiative transfer, which describe radiative transfer in domains with Fresnel interfaces, are proposed in this paper. These problems admit analytic solutions and can be used as benchmark ones. The proposed scheme is applied to the solution of the problems. Numerical results show that the presence of Fresnel interfaces leads to an appreciably larger error in numerical solution. This is connected with the “discontinuity” of the Fresnel reflectivity, which, through numerical diffusion, leads to the distortion of numerical solution. Modification of the scheme allows to reduce the numerical error. 相似文献
6.
应用商业软件ANSYS CFX 计算了等离子体热通量和液态锂流速对自由流动液态锂温度分布的影响。计算结果表明,导向槽中心附近液态锂温度较高,冷却水入口和出口对应位置液态锂温度最低。液态锂出口温度随着等离子体热通量的增大而线性升高,冷却水流速为1.5m·s−1,热通量分别为0.1MW·m−2 和1MW·m−2 时,液态锂在出口处对应的温度分别为255.3°C 和458.6°C。增大液态锂流速,导向槽内液态锂的温度逐渐降低,但温度变化的幅度较小。计算结果对液态锂回路安全稳定运行提供了一定参考。 相似文献
7.
A. Maurente 《Journal of Quantitative Spectroscopy & Radiative Transfer》2008,109(10):1758-1770
This paper presents the computation of radiation heat transfer in a cylindrical enclosure in which the dimensions, the chemical species concentrations and the temperature fields make a realistic representation of an actual combustion chamber. Two gas models are applied and compared: the absorption-line blackbody distribution function (ALBDF), and the standard weighted-sum-of-gray-gases (WSGG) based on coefficients and correlations that are widely used in engineering. While the standard WSGG is restricted to the assumption of homogeneous gas mixture, the ALBDF can be applied to both homogeneous and non-homogeneous media. For the two gas models, the radiative exchanges are computed with the aid of the Monte Carlo method. The results show considerable discrepancies between the WSGG and the ALBDF models for the homogeneous medium. In addition, the importance of considering the non-homogeneity of the medium for an accurate computation of the radiative heat transfer is shown. 相似文献
8.
S.A. Buehler V.O. John M. Milz 《Journal of Quantitative Spectroscopy & Radiative Transfer》2010,111(4):602-615
We present a method to efficiently simulate the measurements of a broadband infrared instrument. The High Resolution Infrared Radiation Sounder (HIRS) instrument is used as example to illustrate the method. The method uses two basic ideas. Firstly, the channel radiance can be approximated by a weighted mean of the radiance at some representative frequencies, where the weights can be determined by linear regression. Secondly, a near-optimal set of representative frequencies can be found by simulated annealing.The paper does not only describe and analyze the method, it also describes how the method was used to derive optimized frequency grids for the HIRS instruments on the satellites TIROS N, NOAA 6-19, and Metop A. The grids and weights as well as the optimization algorithm itself are openly available under a GNU public license. 相似文献
9.
J.-F. Ripoll A.A. Wray 《Journal of Quantitative Spectroscopy & Radiative Transfer》2005,93(4):473-519
We present in this paper a new 3D half-moment model for radiative transfer in a gray medium, called the model, which uses maximum entropy closure. This model is a generalization to 3D of the 1D version recently proposed in (J. Comp. Phys. 180 (2002) 584). The direction space Ω is divided into two pieces, Ω+ and Ω-, in a dynamical way by the plane perpendicular to the total radiative flux, and the half moments are defined from these subspaces. The model closure and the integrations of the radiative transfer equation performed on the moving Ω± spaces are detailed. 1D planar results, which have motivated the extension of the model of (J. Comp. Phys. 180 (2002) 584) to multi-dimensions, are shown. These results are very good. The model is thereafter derived for 3D spherically symmetric geometry, where the correctness of the non-trivial border terms can be checked. Two 3D spherically symmetric problems are numerically solved in order to show the accuracy of the closure and the role of the border terms. Once again, compared to the solution obtained with a ray tracing solver, results are very good. From the 3D half-moment model, a new moment model, called , is derived for the particular case of a 3D hot and opaque source radiating into a cold medium, for applications such as simulations of stellar atmospheres and fires. Two-dimensional numerical results are presented and compared to those obtained solving the RTE and with other moment models. They demonstrate the very good accuracy of the model, its good convergence properties, and better prediction compared to all other existing moment models in its domain of applicability. 相似文献
10.
The formation of acetyl phosphate (AcP), an energy‐rich phosphate compound, was studied through the reaction of 2,4‐dinitrophenyl acetate with H2PO solubilized with Kryptofix® 222 or as a tetra‐n‐butylammonium ((n‐C4H9)4N+) salt in organic media. The results indicated that the rate of the reaction in acetonitrile is strongly inhibited by the addition of water, suggesting that the water added to the medium preferentially solvates the H2PO anion, inhibiting its action as a nucleophile and allowing it to act as a general base catalyst, which leads to the hydrolysis of the ester. The utilization of various organic solvents in the acetyl transfer process demonstrated that the specific interaction of the solvent with water accelerates the process, by desolvation of H2PO, which can act as a nucleophile. Finally, a formation/transformation cycle of AcP was studied in a biphasic system (water/CH2Cl2) using Kryptofix® 222 and (n‐C4H9)4N+BF as both the carrier and solubilizing agent for KH2PO4. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
Y. V. Piskunov K. N. Mikhalev Yu. I. Zhdanov A. P. Gerashenko S. V. Verkhovskii K. A. Okulova E. Yu. Medvedev A. Yu. Yakubovskii L. D. Shustov P. V. Bellot A. Trokiner 《Physica C: Superconductivity and its Applications》1998,300(3-4)
and
NMR measurements in the normal and superconducting states of Tl2Ba2Ca2Cu3O10−δ with different δ are reported. In the overdoped Tl2223 sample with Tc=117 K (Tcopt=123 K) and δ1<δopt different temperature dependencies of the Knight shift
are revealed for inequivalent CuO2 layers. For the inner CuO2 layer with the square oxygen coordination of Cu the decrease of
with temperature is more gradual. In going towards the underdoped Tl2223 with Tc=104 K and δ2>δopt the changes of
with temperature are found to be the same for both types of copper layers. The quadrupole coupling constants for copper and oxygen from different CuO2 layers were obtained. From the variations with doping of the valence contribution to the electric field gradient at copper sites, we estimate both the hole numbers at Cu and oxygen sites and the real concentration of mobile hole carriers nh in each of inequivalent CuO2 layers. In the overdoped Tl2223 sample the charge density in the inner layer differs from the one in the outer plane (with five-fold oxygen coordination for Cu). Our results show that the inhomogeneity of the charge distribution disappears in the underdoped regime. The results are compared with calculations of the charge distribution among the CuO2 planes in multilayered cuprates reported by Haines and Tallon [E.M. Haines, J.L. Tallon, Phys. Rev. B 45 (1992) 3127]. 相似文献
12.
M. Nakamura R.-J. Tarento P. Joyes 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2003,24(1-3):169-172
Electron transfer in the collisions of a
with a Na is theoretically studied. It is assumed that the
target
is collinear (D
h
)
and that its electronic state is meta-stable triplet
state. Adiabatic potential energy surfaces and non-adiabatic
couplings of the
system are calculated by using a semi-empirical
diatomics-in-molecules (DIM) method. The positions of
(avoided)-crossings of potential surfaces are investigated and
the non-adiabatic couplings between two different electronic
states are calculated. An avoided crossing is found in the
region where the separation between the target and projectile is
relatively large (10–15 bohr). A dynamical calculation
demonstrates that this crossing causes charge transfer between
the target and projectile. Another intersection at a smaller
separation changes the targets spin state (from triplet state
to singlet state or vice
versa). The cross-sections for charge and spin
transfer reaction are estimated at the collision energy of 6.8
keV. It is found that the charge transfer cross-section is
extremely enhanced when the target cluster ion is in its
meta-stable triplet state comared to the case where the cluster
is the ground singlet state. 相似文献