首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.

The problem of 1D radiative-conductive heat transfer in a homogeneous isotropic gray medium near a planar diffuse nontransparent surface and in between parallel plates with different temperatures has been solved analytically. Nonconvective measurements of the thermal resistance of parallel-plane polyethylene foam specimens versus the number of layers (i.e., thickness) have been taken, both without and with thin screens made of aluminum foil. The applicability of the suggested theoretical approach and experimental technique for the measurement of radiative heat transfer and heat transfer by conduction in light heat-protective materials has been demonstrated.

  相似文献   

2.
采用间断有限元法(discontinuous finite element method,DFEM)求解非规则形状介质内的辐射导热耦合传热问题,得到了典型非规则形状介质内辐射导热耦合传热问题的高精度数值结果.和传统连续型有限元方法不同,DFEM将计算区域划分成相互独立的离散单元,形函数的构造、未知量的加权近似以及控制方程的求解均在每一个离散单元上进行.通过在单元之间施加迎风格式的数值通量,DFEM保证了整个计算区域的连续性,因此这种方法兼具良好的几何灵活性和局部守恒性.推导了辐射传输方程和能量扩散方程的射导热耦合传热问题,得到了典型非规则形状介质内辐射导热耦合传热的高精度数值结果.  相似文献   

3.
Caihong Jia 《中国物理 B》2022,31(4):40701-040701
Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures. However, it is an enormous challenge to characterize the thermal and physical properties of materials using the diamond anvil cell (DAC) platform. In the present study, a steady-state method is used with a DAC and a combination of thermocouple temperature measurement and numerical analysis is performed to calculate the thermal conductivity of the material. To this end, temperature distributions in the DAC under high pressure are analyzed. We propose a three-dimensional radiative-conductive coupled heat transfer model to simulate the temperature field in the main components of the DAC and calculate in situ thermal conductivity under high-temperature and high-pressure conditions. The proposed model is based on the finite volume method. The obtained results show that heat radiation has a great impact on the temperature field of the DAC, so that ignoring the radiation effect leads to large errors in calculating the heat transport properties of materials. Furthermore, the feasibility of studying the thermal conductivity of different materials is discussed through a numerical model combined with locally measured temperature in the DAC. This article is expected to become a reference for accurate measurement of in situ thermal conductivity in DACs at high-temperature and high-pressure conditions.  相似文献   

4.
The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89–101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.  相似文献   

5.
基于计算流体动力学软件ANSYS CFX,利用非均相流欧拉-欧拉模型耦合RPI(伦斯勒理工大学)沸腾模型开展超汽化冷却结构的过冷沸腾两相流模拟,比较不同翅片结构对超汽化结构换热性能的影响。研究发现在高热流量条件下三角形翅片结构的换热性能优于矩形翅片结构:其中顺流4×3 三角形翅片结构总体换热性能最好;矩形4×3 翅片结构受流速影响较大,由于翅片的阻碍作用使得流速越来越低,换热性能越来越差;逆流4×3 三角形翅片结构由于其翅片间的腔小,并且逆流翅片对主流的破坏使得腔内流体保持着很大的湍度,所以翅片区有很好的换热性能,但由于逆流翅片对流体阻碍作用大,小槽内流体速度越来越低,使得远离翅片区的侧边换热性能逐渐变差。  相似文献   

6.
Based on the computational fluid dynamic code ANSYS CFX, the inhomogeneous Eulerian- Eulerian multiphase model coupled with RPI (Rensselaer Polytechnic Institute) boiling model is adopted to simulate the subcooled boiling two-phase flow of hypervapotron structure, and the effects of different fin structures on the heat transfer performance of hypervapotron structures are compared. The results show that under high heat flux conditions, the heat transfer performance of the triangular fin structure is better than the rectangular fin structure. Triangular 4×3 to the flow geometry has the best heat transfer performance. Rectangular 4×3 geometry is greatly affected by the flow rate due to the obstruction of the fins making the flow rate to be lower and the heat transfer performance will be getting worse. Triangular 4×3 against the flow geometry make the fluid in the cavity to maintain a large degree of turbulence due to the small cavity between the fins and the adverse effects of counter-flow fins on the mainstream, so the fin area has a good heat transfer performance, but due to the impeding effect of the counter-flow fin on the fluid, the fluid velocity in the slot is getting lower and lower, as the result, the heat transfer performance on the sidewall far away from the fin area is getting worse.  相似文献   

7.
对圆管内辐射物性不同的两层介质层流入口段,采用SIMPLEC算法与蒙特卡罗法数值模拟了二维稳态流动与扩散混合时的辐射-对流耦合换热。通过计算,分析了介质层几何参数、介质物性与流动参数对组份分布与耦合换热的影响。结果表明,介质组分的扩散混合对耦合换热存在明显的影响区域,且该影响区大于组分的扩散混合区;外层介质的吸收系数、入口截面的相对厚度对耦合换热的影响基本一致;质扩散系数对耦合换热的影响很小,入口雷诺数的增加会抑制质扩散。  相似文献   

8.
管内高温介质层流入口段中的热辐射作用   总被引:1,自引:1,他引:0  
数值研究了高温介质密度随温度变化时,管内层流入口段耦合换热中的热辐射作用。采用离散坐标法、控制容积法耦合求解辐射传递方程、能量方程及N-S方程。考察了中等大小光学厚度下,热辐射作用对介质内速度分布、温度分布以及换热的影响。结果表明,即使在不大的光学厚度下,热辐射作用对管内高温介质层流入口段耦合换热的速度场与换热强度都有明显影响。  相似文献   

9.
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners (PRBs). In the present work, a 2-D rectangular model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. The gas and the solid phases are considered in non-local thermal equilibrium and combustion in the porous medium is modeled by considering a non-uniform heat generation zone. The homogeneous porous media, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. The radiation effect in the gas flow is neglected but the conductive heat transfer is taken into account. In order to analyze the thermal characteristics of porous burners, the coupled energy equations for the gas and porous medium in steady condition are solved numerically and the discrete ordinates method (DOM) is used to obtain the distribution of radiative heat flux in the porous media. Finally, the effects of various parameters on the performance of porous radiant burners are examined. The present results are compared with some reported theoretical and experimental results by other investigators and good agreement is found.  相似文献   

10.
Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index.  相似文献   

11.
有限体积法求解圆柱形散射介质内辐射与导热耦合换热   总被引:3,自引:0,他引:3  
将谱带模型与有限体积解法相结合;求吸收、发射、散射性非灰介质圆柱体内辐射传递方程。考虑辐射强度场与热扩散温度场的耦合,将控制容积法与有限体积法结合,求解辐射与导热耦合换热。经与光线踪迹法、离散传递法的计算结果比较表明,谱带模型与有限体积解法相结合能处理多场耦合下非灰介质内的辐射换热。  相似文献   

12.
Present study is devoted to analyze the magnetohydrodynamics (MHD) squeezed flow of nanofluid over a sensor surface. Modeling of the problem is based on the geometry and the interaction of three different kinds of metallic nanoparticles namely: copper (Cu), alumina (Al2O3) and titanium dioxide (TiO2) with the homogeneous mixture of base fluid (water). The self-similar numerical solutions are presented for the reduced form of the system of coupled ordinary differential equations. The effects of nanoparticles volume friction, permeable velocity and squeezing parameter for the flow and heat transfer within the boundary layer are presented through graphs. Comparison among the solvent are constructed for both skin friction and Nusselt number. Flow behavior of the working nanofluid according to the present geometry has analyzed through Stream lines. Conclusion is drawn on the basis of entire investigation and it is found that in squeezing flow phenomena Cu–water gives the better heat transfer performance as compare with the rest of mixtures.  相似文献   

13.
We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid–solid systems in complex two- and three-dimensional geometry. Fluids are modeled with the temperature-dependent incompressible Navier–Stokes equations using the Boussinesq approximation. Solids with heat transfer are modeled with the heat equation. Appropriate interface equations are applied to couple the solutions across different domains. The computational region is divided into a number of sub-domains corresponding to fluid domains and solid domains. There may be multiple fluid domains and multiple solid domains. Each fluid or solid sub-domain is discretized with an overlapping grid. The entire region is associated with a composite grid which is the union of the overlapping grids for the sub-domains. A different physics solver (fluid solver or solid solver) is associated with each sub-domain. A higher-level multi-domain solver manages the entire solution process.  相似文献   

14.
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.  相似文献   

15.
This article presents the results of an experimental investigation of heat transfer augmentation by porous media in a natural gas-fired radiant tube burner. The results show that significant heat transfer augmentation is possible with the use of porous ceramic inserts in both premixed and nonpremixed gas-fired radiant tube burners. Furthermore, this work has shown that geometry variations in the porous insert configuration can appreciably alter both heat transfer rates and mixing and chemical reaction rates in these systems. In the case of nonpremixed flames, the effect of variation of insert geometry is more than simple heat transfer augmentation via gas enthalpy conversion to thermal radiation by the porous medium. There is also a significant alteration of the reactive gas mixing (and therefore chemical reaction and heat release) rates along the length of the tube. The basic mechanisms that control the mixing rate and heat release distribution in these systems are still unknown. Nevertheless, it appears reasonable to expect that optimal operating conditions (uniform, maximum heat flux and temperature; and even minimal NOx emissions) can be achieved, at least in the diffusion burner case, solely through porous insert geometric configuration variations.  相似文献   

16.
A detailed numerical modeling is performed to investigate coupled heat transfer of natural convection, radiation and conduction in high-temperature multilayer thermal insulation (MTI), which consists of high-porous, non-gray semitransparent fibrous materials and reflective foils. Radiation within fibers, radiation between fibers and the reflective foils, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection, whereas the radiative transfer equation (RTE) is used to solve the radiative heat flux for non-gray materials. Key features of the macroscopic model include two-dimensional effects, non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium (LTNE). This model was validated by comparison with experimental data and it was used to investigate natural convection of coupled heat transfer in multilayer insulation, numerical results showed that natural convection is more likely to occur when the heated/cooled rate is low, while natural convection can be ignored in simulating steady-state coupled heat transfer in MTI.  相似文献   

17.
Radiative heat transfer in an axisymmetric enclosure with absorbing, emitting, and scattering medium is studied here by using the different methods such as MDOM, FVM, and MFVM with emphasis on the treatment of angular derivative term, which appears in curvilinear coordinates due to angular redistribution. After final discretization equation for MFVM is introduced by using the step scheme and directional weights, the present approach is validated by applying it to three different benchmarking problems with absorbing, emitting, and scattering medium. All of the results presented here support its accuracy as well as moderate efficiency. Finally, the present approaches are applied to a truncated cone-shaped enclosure as a body-fitted geometry case.  相似文献   

18.
目标强度特性是海洋生物声学识别与资源量评估的重要依据,其中,基于近似几何体和声阻抗特性的理论模型法是研究海洋生物目标强度的重要手段。由于对几何形态近似处理以及数值求解方法的限制,传统理论模型对声波频率、入射方位以及目标声阻抗、形态尺寸等均有各自不同的适用范围,单一模型难以满足不同种类或同一种类但不同尺寸海洋生物的目标强度求解。本文尝试将逐渐见诸应用的有限元/边界元耦合方法用于海洋生物目标强度特性研究,分别以球形生物、纺锤形鱼类尾明角灯鱼(Ceratoscopelus warmingii)和细长形浮游动物南极大磷虾(Euphausia superba)为例进行仿真计算,并与相适应的经典理论模型进行对比分析。结果表明,对于球形生物,有限元/边界元耦合方法与解析模型的目标强度频响曲线完全吻合;对于纺锤形鱼类,有限元/边界元耦合方法可有效弥补基于模态级数解的形变圆柱体模型在中低频和两端入射时的准确性问题;对于细长形浮游动物,有限元/边界元耦合方法与畸变波玻恩近似模型高度吻合。综上,有限元/边界元耦合方法对多种海洋生物目标强度求解均具有较好的适用性,未来有待进一步结合实验测定进行验证。  相似文献   

19.
The coupled conductive radiative transfer problem in two homogeneous layers slab of anisotropic scattering with specularly reflecting boundaries has been considered. A Galerkin-iterative technique is used to solve the coupled conductive radiative heat equations in integral forms for the two layers. Numerical results are obtained for the temperature, the conductive, radiative and the total heat fluxes for the two homogeneous layers with isotropic and anisotropic scattering. The calculations are also carried out for homogeneous plane parallel medium with anisotropic scattering which show good agreement with the published calculations.  相似文献   

20.
The main objective of this paper is to extend to two-dimensional (2-D) medium the ray tracing-node analyzing method, which has already been successfully used to solve one-dimensional (1-D) problem of coupled heat transfer in a semitransparent medium. For simplicity, an infinitely long rectangular semitransparent medium with four black opaque surfaces is chosen as our studying object. A control volume method in the implicit scheme is adopted for discretizing the partial transient energy equation. In combination with spectral band model, the radiative heat source term is calculated using the radiative transfer coefficients (RTCs), which are deduced by the ray tracing method. The Partankar's linearization method is used to linearize the radiative source term and the opaque boundary condition, and the linearized equations are solved by the ADI method. Effects of absorption coefficient, refractive index and conductivity on transient cooling process in the 2-D gray rectangular medium are investigated under the condition that the radiation and convection processes cool one side of the rectangular medium while heat the remaining three sides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号