首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The influence of ice crystal orientation was investigated on retrieving cirrus optical thickness (τ) and aspect ratio of ice crystals (Q) from satellite measurements using the total and polarized reflectances at a wavelength of . We considered columnar and plate like hexagonal ice crystals whose long axes are randomly oriented in the horizontal plane (2D model) with some amplitude of oscillation expressed by a Gaussian distribution function with the standard deviation of σ.The retrieved τ and Q values significantly depend on the assumption of σ, in particular for the plate type. Furthermore, the relationship between σ and the retrieved values depends on the solar, satellite, and target geometries. In our case study, for one target area, τ value retrieved using the 2D model with σ=5° was approximately twice larger than that using the 2D model with σ=20°, while the retrieved Q value was not significantly influenced by σ. For another target area, the τ(Q) retrieved using the 2D model with σ=5° was about 1.5 (1.8) times larger than that retrieved using the 2D model with σ=20°.  相似文献   

2.
Ice water content (IWC) is a standard product of cloud radar measurements. In this work, cloud radar cross-sections of various ice clouds are modeled to examine the relationship between the radar signal and the IWC. We report that using backscatter signal at cloud radar wavelength to retrieve IWC results in large uncertainties. Particle size distribution is the primary cause for the uncertainty in the retrieved IWC at radar wavelengths, though particle shape and orientation also play significant roles. Particularly in this study, we demonstrate that using both transmitted waves through the clouds (extinction) and backscattered waves from the clouds to retrieve the mean particle size and then using the mean particle size for IWC retrieval reduces the uncertainty. IWC retrieval can be improved with size distribution derived from dual wavelength cloud radar.  相似文献   

3.
4.
A number of cirrus ice crystal scattering models are tested using measurements of total reflectance and polarised reflectance obtained from the space-based polarisation and directionality of Earth's reflectances (POLDER) instrument. In this paper, 1 day of global POLDER data is utilised taken from the 25 June 2003 to test the assumed ice crystal models. The POLDER instrument is able to test the validity of various ice crystal models since it can measure the total reflectance and polarised reflectance at up to 14 different viewing directions almost simultaneously between the scattering angles of about 60–180°. It is found that ice crystal models that are randomised (in this case the randomisation element is through distortion) from some pristine ice crystal geometry best fit simultaneous measurements of total and polarised reflectance. The optimal distortion parameter that best describes the POLDER measurements is found to be 0.40, which has been applied to a randomly oriented six-branched bullet-rosette and randomly oriented chain-like aggregate. Moreover, distorted ice crystals that have undergone significant distortions beyond 0.40 may fit the total reflectance measurements but not the polarisation measurements. Therefore, total reflectance measurements by themselves do not provide sufficient information to constrain assumed complex/distorted ice crystal models.  相似文献   

5.
Measurements from depolarized lidars provide a promising method to retrieve both cloud and aerosol properties and a versatile complement to passive satellite-based sensors. For lidar observations of clouds and aerosols, multiple scattering plays an important role in the scattering process. Monte Carlo simulations are carried out to investigate the sensitivity of lidar backscattering depolarization to cloud and aerosol properties. Lidar parameters are chosen to be similar to those of the upcoming space-based CALIPSO lidar. Cases are considered that consist of a single cloud or aerosol layer, as well as a case in which cirrus clouds overlay different types of aerosols. It is demonstrated that besides thermodynamic cloud phase, the depolarized lidar signal may provide additional information on ice or aerosol particle shapes. However, our results show little sensitivity to ice or aerosol particle sizes. Additionally, for the case of multiple but overlapping layers involving both clouds and aerosols, the depolarized lidar contains information that can help identify the particle properties of each layer.  相似文献   

6.
Our purpose was a qualitative assessment of the impact of dust and water ice aerosols on the retrieved temperature profiles and the retrieval process itself in the Martian atmosphere. It aims to quantify the related uncertainties in the atmospheric temperature profiles derived from radiance measurements of the Planetary Fourier Spectrometer (PFS), currently operating on the Mars Express orbiter. In this study the effects of aerosol opacities on simulated data and retrieved temperature profiles were also investigated.From the analysis of the model atmosphere including dust and water ice with different size distributions it results that the dust component affects weighting functions and brightness temperatures less than water ice. A similar situation is also observed when different vertical distributions are considered. Unlike dust, water ice with different sizes of crystals evidently influences weighting functions and brightness temperatures. The impact of the considered water ice vertical distributions on brightness temperatures is noticeable only near 840 cm−1.Considering different dust opacities, the largest differences—5 K maximum—between retrieved temperature profiles were observed close to the surface, regardless assumptions on a size distribution or the refractive indices. Contrary to dust, the different sizes of water ice particles assumed during retrieval stronger affected the retrieved temperature profiles than water ice opacities. Moreover, the differences in the retrieved temperature profiles were amplified while wrong optical properties for dust as well as for water ice aerosol were assumed instead of the nominal case. This means that the wrong assumption can induce an additional source of the retrieval error and lead to unreasonable temperature profiles. In the cases of expected heavily loads water ice crystals, their size distribution in the Martian atmosphere should be known from other observations before the retrieval of the temperature profile is attempted.For the analyzed examples of real PFS measurements the impact of different dust vertical distributions on the retrieval of temperature profile is prominent only in layers close to the surface. However, these differences remain comparable with retrieval errors. All influences of dust on weighting functions, brightness temperatures and during retrieval can be neglected if the noise equivalent radiance (NER) of PFS is taken into account.  相似文献   

7.
A new data analysis software is presented that has been developed for the retrieval of atmospheric minor constituents from limb-sounding observations made in the millimeter and sub-millimeter spectral regions. The code, which is called MARC (Millimetre-wave Atmospheric-Retrieval Code), has been designed to analyze the observations of the MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb-Sounding) instrument which operates on the M-55 stratospheric aircraft. The main objective of the analysis of MARSCHALS observations will be to assess long-wave measurement capabilities for the study of the upper troposphere and lower stratosphere regions. The key questions will be the accuracy and spatial resolution that can be achieved by long-wave measurements in presence of clouds and horizontal gradients.MARC performs a global-fit multi-target retrieval, in which optimal estimation is used and errors of the forward model parameters are taken into account for the definition of the cost function minimized in the retrieval. With these features it is easy to use the variables of the problem as either forward model constant parameters or retrieved unknowns with minimum impact on the stability of the retrieval. MARC can perform a wide spectral-band analysis of the observations without a selection of the analyzed channels, and the retrieval process provides an error budget of the retrieved unknowns that includes both the forward model errors and the measurement errors. The error budget obtained in this way is smaller than that obtained when accounting a posteriori for the systematic errors. The new combination of the retrieval features makes possible an efficient and optimal exploitation of the information content of the observations.  相似文献   

8.
In this paper we describe a retrieval approach for the simultaneous determination of the altitude distributions of p, T and VMR of atmospheric constituents from limb-scanning measurements of the atmosphere. This analysis method, named multi-target retrieval (MTR), has been designed and implemented in a computer code aimed at the analysis of MIPAS-ENVISAT observations; however, the concepts implemented in MTR have a general validity and can be extended to the analysis of all type of limb-scanning observations. In order to assess performance and advantages of the proposed approach, MTR has been compared with the sequential analysis system implemented by ESA as the level-2 processor for MIPAS measurements. The comparison has been performed on a common set of target species and spectral intervals. The performed tests have shown that MTR produces results of better quality than a sequential retrieval. However, the simultaneous retrieval of p, T and water VMR has not lead to satisfactory results below the tropopause, because of the high correlation occurring between p and water VMR in the troposphere. We have shown that this problem can be fixed extending the MTR analysis to at least one further target whose spectral features decouple the retrieval of pressure and water VMR. Ozone was found to be a suitable target for this purpose. The advantages of the MTR analysis system in terms of systematic errors have also been discussed.  相似文献   

9.
Collision-induced line narrowing, which has been discovered in the 1950s and investigated thoroughly in the laboratory since then, has yet never been taken into account in the spectroscopic remote sensing of the atmosphere. This work investigates the effect of collision-induced line narrowing onto the retrieval of HCl and HF vertical profiles from ground-based solar absorption FTIR measurements made at the NDSC station of the Jungfraujoch (46.5°N, 8°E and 3580 m above see level). The retrievals are performed with the Atmosphit software, recently developed at the Université Libre de Bruxelles. It is presented in this paper for the first time and is validated against the widely used SFIT2 software. The impact of the line narrowing onto the retrieval of HCl and HF vertical profiles is examined relying on careful information content and error budget analyses. We report that the effect is relatively weak for HCl but significant for HF. Confirmation of the need to take the line narrowing into account for the retrieval of vertical profiles from ground-based FTIR spectra is given by comparison with data from the HALOE space borne instrument, rather insensitive to this spectroscopic effect.  相似文献   

10.
To study volatile combustion processes of single coal particles non-intrusive simultaneous multi-parameter measurements were performed. The experiment was carried out in a fully premixed flat flame burner with well-defined boundary conditions. For flame visualization high-speed luminescence imaging was combined with high-resolution high-speed OH-PLIF. To address particle size and shape a stereoscopic high-resolution backlight-illumination system was set up. Due to simultaneous recording of individual particle events the volatile combustion duration related to particle size, shape and velocity was measured. A comparison of luminescence imaging and OH-PLIF for flame visualization was investigated to define their application areas in coal combustion. The stereoscopic backlight-illumination setup was benchmarked to a well characterized bituminous coal. With a pixel resolution of ~2.5 µm fine particle contours were resolved. The particle diameter and eccentricity were evaluated by an ellipse approximation. The experimental setup can be used to investigate different coal ranks and biomass in N2/O2 and CO2/O2 atmospheres in future.  相似文献   

11.
A rigorous and systematic intercomparison of codes used for the retrieval of trace gas profiles from high-resolution ground-based solar absorption FTIR measurements is presented for the first time. Spectra were analyzed with the two widely used independent, retrieval codes: SFIT2 and PROFFIT9. Vertical profiles of O3, HNO3, HDO, and N2O were derived from the same set of typical observed spectra. Analysis of O3 was improved by using updated line parameters. It is shown that profiles and total column amounts are in excellent agreement, when similar constraints are applied, and that the resolution kernel matrices are also consistent. Owing to the limited altitude resolution of ground-based observations, the impact of the constraints on the solution is not negligible. It is shown that the results are also compatible for independently chosen constraints. Perspectives for refined constraints are discussed. It can be concluded that the error budget introduced by the radiative transfer code and the retrieval algorithm on total columns deduced from high-resolution ground-based solar FTIR spectra is below 1%.  相似文献   

12.
A major challenge in retrieving CO2 concentrations from thermal infrared remote sensing comes from the fact that measurements in the 4.3 and 15 μm absorption bands (AIRS or TES) are sensitive to both temperature and CO2 variations. This complicates the selection of absorption channels with maximum CO2 concentration information content. In contrast, retrievals using near infrared (NIR) CO2 absorption bands are relatively insensitive to temperature and are most sensitive to changes of CO2 near the surface, where the sources and sinks are located. The Orbiting Carbon Observatory (OCO) was built to measure reflected sunlight in three NIR spectral regions (the 0.76 μm O2 A-band and two CO2 bands at 1.61 and 2.06 μm). In an effort to significantly increase the speed of accurate CO2 retrieval algorithms for OCO, we performed an information content analysis to identify the 20 best channels from each CO2 spectral region to use in OCO retrievals. Retrievals using these 40 channels provide as much as 75% of the total CO2 information content compared to retrievals using all 1016 channels in each spectral region. The CO2 retrievals using our selected channels have a precision better than 0.1 ppm. This technique can be applied to the retrieval of other geophysical variables (e.g., temperature or CH4), or modified for other instruments, such as AIRS or TES.  相似文献   

13.
杨晋朝  夏智勋  胡建新 《物理学报》2012,61(16):164702-164702
建立了镁颗粒群着火的一维非稳态有限影响体模型, 数值模拟颗粒群中镁颗粒的着火过程. 研究表明, 当镁颗粒表面反应加剧之后,颗粒相温度急剧上升, 迅速达到着火, 而其周围气相的温升速率却远小于颗粒的温升速率; 在着火过程中气相温度只在颗粒表面附近升高比较明显, 整体温度升高不大. 分析了颗粒群内部参数和环境参数对镁颗粒群着火的影响. 随颗粒浓度的增加, 颗 粒群变得易于着火, 其着火时间变短, 但颗粒浓度增大到一定程度后, 继续增大该值将对颗粒群的着火起消极作用. 环境压力对颗粒群着火的影响比较小,在1-5 atm范围内颗粒群的着火性能基本不变. 气相中氧气浓度对颗粒群的着火性能影响也不显著, 但当氧气浓度过小时, 对着火过程的影响将大大增强.颗粒粒径、气相/颗粒相初温、辐射源温度对颗粒 群着火的影响巨大,小粒径、高温度促使颗粒群快速着火.数值模拟与文献中试验 结果的变化趋势相一致.  相似文献   

14.
A new bistatic lidar was developed for measuring water cloud particle size at the base of lower clouds. The lidar uses a pulsed Nd:YAG laser at 532 nm and a receiver having a polarization analyzer located at a suitable scattering angle. Cloud particle size (mode radius of the assumed size distribution) was derived from the ratio of the polarization components of the scattered light based on the single scattering Mie theory. The experiment was performed on board the research vessel Mirai in the northwestern Pacific. Particle size at the bottom of maritime cumulus and stratus was measured, and the difference between the internal structures of cumulus and stratus was observed. The effect of multiple scattering was studied by changing the observing scattering angle. The effect was not significant when the penetration depth was less than 50 m.  相似文献   

15.
阐述基于Mie散射理论和激光技术而研制的云粒子探测仪的相关问题。利用m量级的小孔光阑模拟感应区域的散射光,并对系统的探测敏感区域面积进行测定;通过使用不同直径的标准粒子对系统进行标定,得到可靠的响应曲线,用于定量测量云粒子尺度谱及粒子数密度。在进行了一系列实验室内的实验之后,将仪器装载在飞机上进行穿云飞行测量实验,表明了该仪器在飞行过程中工作正常、稳定,并且能够即时地显示采样区内云粒子尺度谱分布和数浓度;通过分析探测得到的数据,并与云粒子谱分布进行比较,确认了探测数据有效可靠,反映了该仪器具有良好的测云能力。  相似文献   

16.
Ultrasound transmission and reflection are utilized to characterize the particle retention in depth of fluid-saturated porous samples under a flow of silt solution. The effect of the concentration of particles in the fluid is investigated via measurements of “comparison coefficients” which are the ratio of the Fourier transforms of the reflected (transmitted) signals before and after the particle flow. Numerical computations of the latter coefficients using Biot-Stoll’s theory are compared to the experimental data. The frequential evolution of physical parameters such as bulk and shear moduli are sought. To this end, a gradient descent algorithm is utilized to minimize the differences between the experimental and calculated comparison coefficients. Several concentrations of suspended particles are investigated to check the validity of this inversion method and a good agreement between theory and experiments is observed.  相似文献   

17.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

18.
阐述基于Mie散射理论和激光技术而研制的云粒子探测仪的相关问题。利用m量级的小孔光阑模拟感应区域的散射光,并对系统的探测敏感区域面积进行测定;通过使用不同直径的标准粒子对系统进行标定,得到可靠的响应曲线,用于定量测量云粒子尺度谱及粒子数密度。在进行了一系列实验室内的实验之后,将仪器装载在飞机上进行穿云飞行测量实验,表明了该仪器在飞行过程中工作正常、稳定,并且能够即时地显示采样区内云粒子尺度谱分布和数浓度;通过分析探测得到的数据,并与云粒子谱分布进行比较,确认了探测数据有效可靠,反映了该仪器具有良好的测云能力。  相似文献   

19.
We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility.  相似文献   

20.
Using total light scattering technique to measure the particle size distribution has advantages of simplicity in measurement principle and convenience in the optical arrangement. However, the calculation of extinction efficiency based on Mie theory for a spherical particle is expensive in both time and resources. Thus, a simple but accurate approximation formula for the exact extinction efficiency may be very desirable. The accuracy and limitations of using the anomalous diffraction approximation (ADA) method for calculating the extinction efficiency of a spherical particle are investigated. Meanwhile, the monomodal and bimodal particle size distributions of spherical particles are retrieved using the genetic algorithm in the dependent model. Furthermore, the spheroidal model in the retrieval of non-spherical particle size distribution is also discussed, which verifies the non-sphericity has a significant effect on the retrieval of particle size distribution compared with the assumed homogeneous isotropic sphere. Both numerical computer simulations and experimental results illustrate that the ADA can be successfully applied to retrieve the particle size distributions for spherical and spheroidal particles with high stability even in the presence of random noise. The method has advantages of simplicity, rapidity, and suitability for in-line particle size measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号