首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiative heat transfer in an axisymmetric enclosure with absorbing, emitting, and scattering medium is studied here by using the different methods such as MDOM, FVM, and MFVM with emphasis on the treatment of angular derivative term, which appears in curvilinear coordinates due to angular redistribution. After final discretization equation for MFVM is introduced by using the step scheme and directional weights, the present approach is validated by applying it to three different benchmarking problems with absorbing, emitting, and scattering medium. All of the results presented here support its accuracy as well as moderate efficiency. Finally, the present approaches are applied to a truncated cone-shaped enclosure as a body-fitted geometry case.  相似文献   

2.
In this paper a new methodology is presented by the authors for the numerical treatment of radiative heat transfer in emitting, absorbing and scattering media. This methodology is based on the utilisation of Control Volume Finite Element Method (CVFEM) and the use, for the first time, of matrix formulation of the discretized Radiative Transfer Equation (RTE). The advantages of the proposed methodology is to avoid problems that confronted when previous techniques are used to predict radiative heat transfer, essentially, in complex geometries and when there is scattering and/or non-black boundaries surfaces. Besides, the new formulation of the discretized RTE presented in this paper makes it possible to solve the algebraic system by direct or iterative numerical methods. The theoretical background of CVFEM and matrix formulation is presented in the text. The proposed technique is applied to different test problems, and the results compared favourably against other published works. Moreover this paper discusses in detail the effects of some radiative parameters, such as optical thickness and walls emissivities on the spatial evolution of the radiant heat flux. The numerical simulation of radiative heat transfer for different cases using the algorithm proposed in this work has shown that the developed computer procedure needs an accurate CPU time and is exempt of any numerical oscillations.  相似文献   

3.
In this paper, a 3D algorithm for the treatment of radiative heat transfer in emitting, absorbing, and scattering media is developed. The numerical approach is based on the utilization of the unstructured control volume finite element method (CVFEM) which, to the knowledge of the authors, is applied for the first time to simulate radiative heat transfer in participated media confined in 3D complex geometries. This simulation makes simultaneously the use of the merits of both the finite element method and the control volume method. Unstructured 3D triangular element grids are employed in the spatial discretization and azimuthal discretization strategy is employed in the angular discretization. The general discretization equation is presented and solved by the conditioned conjugate gradient squared method (CCGS). In order to test the efficiency of the developed method, several 3D complex geometries including a hexahedral enclosure, a 3D equilateral triangular enclosure, a 3D L-shaped enclosure and 3D elliptical enclosure are examined. The results are compared with the exact solutions or published references and the accuracy obtained in each case is shown to be highly satisfactory. Moreover, this approach required a less CPU time and iterations compared with those of even parity formulation of the discrete ordinates method.  相似文献   

4.
The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.  相似文献   

5.
Both Galerkin finite element method (GFEM) and least squares finite element method (LSFEM) are developed and their performances are compared for solving the radiative transfer equation of graded index medium in cylindrical coordinate system (RTEGC). The angular redistribution term of the RTEGC is discretized by finite difference approach and after angular discretization the RTEGC is formulated into a discrete-ordinates form, which is then discretized based on Galerkin or least squares finite element approach. To overcome the RTEGC-led numerical singularity at the origin of cylindrical coordinate system, a pole condition is proposed as a special mathematical boundary condition. Compared with the GFEM, the LSFEM has very good numerical properties and can effectively mitigate the nonphysical oscillation appeared in the GFEM solutions. Various problems of both axisymmetry and nonaxisymmetry, and with medium of uniform refractive index distribution or graded refractive index distribution are tested. The results show that both the finite element approaches have good accuracy to predict the radiative heat transfer in semitransparent graded index cylindrical medium, while the LSFEM has better numerical stability.  相似文献   

6.
Recently, an efficient numerical method, which is called the collocation spectral method (CSM), for radiative heat transfer problems, has been proposed by the present authors. In this numerical method there exists the exponential convergence rate, which can obtain a very high accuracy even using a small number of grids. In this article, the CSM based on body-fitted coordinates (BFC) is extended to simulate radiative heat transfer problems in participating medium confined in 2D complex geometries. This numerical method makes simultaneously the use of the merits of both the CSM and BFC. In this numerical approach, the radiative transfer equation (RTE) in orthogonal Cartesian coordinates should be transformed into the equation in body-fitted nonorthogonal curvilinear coordinates. In order to test the efficiency of the developed method, several 2D complex irregular enclosures with curved boundaries and containing an absorbing, emitting and scattering medium are examined. The results obtained by the CSM are assessed by comparing the predictions with those in references. These comparisons indicate that the CSM based on BFC can be recommended as a good option to solve radiative heat transfer problems in complex geometries.  相似文献   

7.
In this paper, the lattice Boltzmann method (LBM) is applied to solve the energy equation of a transient conduction-radiation heat transfer problem in a two-dimensional cylindrical enclosure filled with an emitting, absorbing and scattering media. The control volume finite element method (CVFEM) is used to obtain the radiative information. To demonstrate the workability of the LBM in conjunction with the CVFEM to conduction-radiation problems in cylindrical media, the energy equation of the same problem is also solved using the finite difference method (FDM). The effects of different parameters, such as the grid size, the scattering albedo, the extinction coefficient and the conduction-radiation parameter on temperature distribution within the medium are studied. Results of the present work are compared with those available in the literature. LBM-CVFEM results are also compared with those given by the FDM-CVFEM. In all cases, good agreement has been obtained.  相似文献   

8.
The integral form of three-dimensional radiative transfer equation for an absorbing, emitting, and linear-anisotropic scattering medium with space-dependent properties is formulated. A product-integration method is subsequently applied to develop a numerical scheme for solving the corresponding integral transfer equations in a two-dimensional, axisymmetric and nonhomogeneous medium subjected to externally incident radiation or bounded by emitting and diffusely-reflecting walls. The numerical solutions for cases of constant, continuous, and stepwise variations of scattering albedo are presented to illustrate its accuracy and flexibility, and validated by comparing with results available in the literature.  相似文献   

9.
In this paper, the control volume finite element method (CVFEM) is applied for the first time to solve nonaxisymmetric radiative transfer in inhomogeneous, emitting, absorbing and anisotropic scattering cylindrical media. Mathematical formulations as well as numerical implementation are given and the final discretized equations are based on similar meshes used for convective and conductive heat transfer in computational fluid dynamic analysis. In order to test the efficiency of the developed method, four nonaxisymmetric problems have been examined. Also, the grid dependence and the false scattering of the CVFEM are investigated and compared with the finite volume method and the discrete ordinates interpolation method.  相似文献   

10.
The frequency characteristics of the acoustic wave transmission in a medium with mean flow are considered. One approach is to solve the Helmholtz equation with mean flow medium in original co-ordinates, which is directly discretized for the one-dimensional and the axisymmetric FEM. Another approach is to transform the equation into the standard Helmholtz equation, which is discretized for the axisymmetric FEM and the three-dimensional BEM. The numerical models are examined first for a straight circular duct. The solutions by the numerical approaches are compared with the analytical solution. The examination is then extended to the case when the mean flow is locally present in the muffler with expansion chamber. To model the spatial mean flow in the BEM model, the partitioned domain approach is also developed. No shear effect between the two regions are included.  相似文献   

11.
In the present study, a three-dimensional algorithm for the treatment of radiative heat transfer in emitting, absorbing and scattering media is developed. The approach is based on the utilization of control volume finite element method (CVFEM) which, to the knowledge of the authors, is applied at the first time to 3D radiative heat transfer in participating media. The accuracy of the present algorithm is tested by comparing its predictions to other published works. Comparisons show that CVFEM produces good results. Moreover, this approach permits compatibility with other numerical methods used for computational fluids mechanics problems.  相似文献   

12.
An inverse radiation problem was considered to estimate boundary conditions such as temperature distribution and emissivity in axisymmetric absorbing, emitting, and scattering medium, given the measured incident radiative heat fluxes. The finite-volume method was employed to solve a direct radiative transfer equation for a two-dimensional axisymmetric geometry. Various parameter estimators, such as conjugate-gradient method, hybrid genetic algorithm, and finite-difference Newton method, were employed to solve the inverse problems, while discussing their performances in terms of estimation accuracy and computational efficiency. Based on this, we proposed, as a best inverse analysis tool, a new combined method that adopted the hybrid genetic algorithm as an initial value selector and used the finite-difference Newton method as a parameter estimator.  相似文献   

13.
This paper continues a systematic theoretical analysis of electromagnetic scattering by a group of arbitrarily sized, shaped, and oriented particles embedded in an absorbing, homogeneous, isotropic, and unbounded medium. The previously developed microphysical approach is used to derive the generalized form of the radiative transfer equation (RTE) applicable to a large group of sparsely, randomly, and uniformly distributed particles. The derivation of the RTE directly from the macroscopic Maxwell equations yields unambiguous and definitive analytical expressions for the participating quantities and thereby fully resolves the lasting controversy caused by the conflicting outcomes of several phenomenological approaches.  相似文献   

14.
This article deals with the simultaneous estimation of parameters in a 2-D transient conduction-radiation heat transfer problem. The homogeneous medium is assumed to be absorbing, emitting and scattering. The boundaries of the enclosure are diffuse gray. Three parameters, viz. the scattering albedo, the conduction-radiation parameter and the boundary emissivity, are simultaneously estimated by the inverse method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM) in conjunction with the genetic algorithm (GA). In the direct method, the FVM is used for computing the radiative information while the LBM is used to solve the energy equation. The temperature field obtained in the direct method is used in the inverse method for simultaneous estimation of unknown parameters using the LBM-FVM and the GA. The LBM-FVM-GA combination has been found to accurately predict the unknown parameters.  相似文献   

15.
The current study addresses the mathematical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and isotropic scattering gray medium within two-dimensional square enclosure. A blended method where the concepts of modified differential approximation employed by combining discrete ordinate method and spherical harmonics method, has been developed for modeling the radiative transport equation. The gray participating medium is bounded by isothermal walls of two-dimensional enclosure which are considered to be opaque, diffuse and gray. The effect of various influencing parameters i.e., radiation-conduction parameter, surface emissivity, single scattering albedo and optical thickness has been illustrated. The adaptability of the present method has also been addressed.  相似文献   

16.
Combined conduction-radiation and natural convection-radiation in two-dimensional enclosures containing gray absorbing/emitting medium are numerically investigated. The discrete ordinates interpolation method (DOIM) is used to solve the radiative transfer equation (RTE). It is incorporated into a commercial software (FLUENT®) by using user-defined function (UDF) to be used in a finite volume-based code for fluid flow computation. Two issues are critically examined: accuracy and versatility. Cases of combined conduction-radiation are considered first and the results are compared with other benchmark solutions to validate the accuracy. Additional problems are also tested to verify the capability of handling unstructured grid system and irregular geometry. Combined natural convection-radiation problem is then examined varying the optical thickness. The radiation effect is investigated through the profiles of velocity, temperature distributions and streamlines. The results are compared with discrete ordinates (DO) solutions, Rosseland solutions and P1 solutions which are offered by FLUENT® package. The accuracy and other numerical characteristics of DOIM are scrutinized. The DOIM shows very successful results from the viewpoint of accuracy and grid compatibility. It is proved to be a reliable future numerical tool for combined heat transfer problems in engineering applications.  相似文献   

17.
This paper deals with heat transfer in non-grey semitransparent two-dimensional sample. Considering an homogeneous purely absorbing medium, we calculated the temperature field and heat fluxes of a material irradiated under a specific direction. Coupled radiative and conductive heat transfer were considered. The radiative heat transfer equation (RTE) was solved using a S8 quadrature and a discrete ordinate method. Reflection and absorption coefficients of the medium were calculated with the silica optical properties. The conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model and two original cases are also presented.  相似文献   

18.
A modified discrete ordinates solution is developed for radiative transfer in a two-dimensional rectangular enclosure which contains an absorbing, emitting and isotropically scattering medium. Uniform and non-uniform diffuse loadings on the top boundary are considered. The intensity is broken into direct and diffuse components. The direct component is determined analytically, and the diffuse transport equation is solved numerically by conventional discrete ordinates procedure. Results are presented for various aspect ratios, media extinction properties, and loading parameters. The standard discrete ordinates solution exhibits anomalies in the flux leaving the bottom which are attributed to ‘ray-effects’. Large errors are observed when the aspect ratio is small. Numerical results obtained using the modified discrete ordinates scheme compare well with benchmark solutions and show no anomalies in the bottom flux.  相似文献   

19.
A radiation code based on method of lines solution of discrete ordinates method for radiative heat transfer in axisymmetric cylindrical enclosures containing absorbing-emitting medium was developed and tested for predictive accuracy by applying it to (i) test problems with black and grey walls (ii) a gas turbine combustor simulator enclosing a non-homogeneous absorbing-emitting medium and benchmarking its steady-state predictions against exact solutions and measurements. Comparisons show that it provides accurate solutions for radiative heat fluxes and can be used with confidence in conjunction with CFD codes based on the same approach.  相似文献   

20.
An important problem in radiative transfer is finding the radiative fields produced by various illuminations (both external and internal) of a plane-parallel, inhomogeneous, absorbing, emitting, and anisotropically-scattering finite medium. One approach to a solution is to find the source function, which represents the rate of production of scattered radiation per unit volume and solid angle, at each point in the medium. The present study develops the existence of a Green's function, called the fundamental source function, which separates the optical properties of the medium from the driving illumination. Radiative linearity then allows the representation of all possible source functions as convolutions of the illumination with the fundamental source function. Parametric differentiation (invariant imbedding) is used to replace the governing linear integral equation for the fundamental source function with a set of differential equations appropriate for numerical integration. This approach for finding the fundamental source function leads naturally to the introduction of fundamental scattering and transmission functions. Our inclusion of anisotropic internal illumination (sources) allows us to develop four new reciprocity relations involving these functions. The reciprocity relations state general equivalences between an internally and an externally driven medium and thus greatly reduce the complexity of radiative transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号