首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black carbon (BC) has become the subject of interest in the recent years for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents, motor vehicle exhausts, etc. In this paper, we present results from our measurements on BC aerosols, total aerosol mass concentration, and aerosol optical depth over an urban environment, namely Hyderabad during January-May, 2003. Diurnal variations of BC suggest that high BC concentrations are observed during 6:00-9:00 h and 19:00-23:00 h. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreases from Thursday to Sunday. Fraction of BC to total mass concentration has been observed to be 7%. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggest that during January-May, diurnal averaged aerosol forcing at the surface was calculated to be −33 Wm−2 and at the top of the atmosphere (TOA) it is to be +9 Wm−2.  相似文献   

2.
The temperature dependence of the infrared absorption cross-sections of CFC-113 (1,1,2-trichlorotrifluoroethane) in a pure vapor phase has been recorded in the 600-1250 cm−1 spectral region using Fourier transform spectroscopy. Spectra at 0.05 cm−1 resolution have been used to derive the integrated band strengths of the five main absorption bands over a range of temperatures from 223 to 283 K. Our results show good agreement with previously published data. The new cross-sections will allow more accurate retrieval of atmospheric CFC-113 concentrations using infrared spectroscopic techniques.  相似文献   

3.
The vertical profile of Saharan dust in the atmosphere is generally characterized by a large aerosol concentration in the mid troposphere, differently from the climatological distribution of other types of particles, that show a peak at the surface and a rapid decrease with height. Saharan dust is also characterized by particles of relatively large size of irregular shape, and variable values of the single scattering albedo (the ratio between radiation scattering and extinction). The dust's peculiar vertical distribution is expected to produce an effect on the calculation of the direct aerosol radiative forcing at the surface and at the top of the atmosphere. This effect is investigated by comparing estimates of aerosol direct visible radiative forcing at the surface and at the top of the atmosphere for dust vertical profiles measured in the Mediterranean, and for the climatological profile. The radiative forcing is estimated by means of an accurate radiative transfer model, and for the ocean surface. The sensitivity of the results on the solar zenith angle, aerosol optical depth, and aerosol absorption is also investigated. The aerosol radiative forcing at the surface shows a very small dependency on the aerosol vertical profile. At the top of the atmosphere, the radiative forcing is weakly dependent on the vertical profile (up to 10% variation on the daily average forcing) for low absorbing particles; conversely, it shows a strong dependency (the daily radiative forcing may vary up to 100%) for absorbing particles. The top of the atmosphere visible radiative forcing efficiency produced by dust having single scattering albedo <0.7 is higher by 4 W m−2 when the observed vertical profile instead of the standard profile is used in the calculations (i.e. it produces a lower cooling). For values of the single scattering albedo around 0.67, the sign of the forcing depends on the vertical profile. The influence of the vertical distribution on the radiative forcing is largest at small values of the solar zenith angle, and at short wavelengths.  相似文献   

4.
Aerosols affect the radiative energy budget on both the regional and global scales. The wavelength-dependent aerosol optical depth (AOD) is a fundamental determinant of the amount by which extra-terrestrial incoming sunlight and outgoing terrestrial radiation are being attenuated in the atmosphere. The present study addresses the influence of local waste burning on aerosol characteristics, black carbon (BC) aerosol mass concentration and spectral solar irradiance using ground-based measurements over the tropical urban environment of Hyderabad, India. AOD has been observed to be maximum during burning days compared to normal days. Aerosol size spectra suggest bimodal distributions during pre-and post-burning periods and trimodal distributions during burning periods. Angstrom wavelength exponent estimated from spectral variation of AOD suggested dominance of accumulation mode particle loading during burning days compared to normal days. Diurnal variation of BC on normal days showed a broad nocturnal peak during ∼20:00 to ∼24:00 h with a maximum value of BC aerosol concentration of ∼14,000 ng m−3 whereas on local waste burning days enormous increases in BC concentrations have been observed with a peak at ∼60,000 ng m−3. Relative attenuation of global solar irradiance during burning days has been found to be of the order of 30% in the visible and 28% in the near-infrared regions. The results are discussed in detail in this paper.  相似文献   

5.
We have investigated the origin of room temperature photoluminescence from ion-beam synthesized Ge nanocrystals (NCs) embedded in SiO2 using steady state and time-resolved photoluminescence (PL) measurements. Ge NCs of diameter 4-13 nm were grown embedded in a thermally grown SiO2 layer by Ge+ ion implantation and subsequent annealing. Steady state PL spectra show a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the SiO2 matrix. Time-resolved PL studies reveal double exponential decay dynamics on the nanoseconds time scale. The faster component of the decay with a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. Our results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.  相似文献   

6.
A two-step approach is proposed to derive component aerosol direct radiative forcing (ADRF) at the top of atmosphere (TOA) over global oceans from 60°S to 60°N for clear-sky condition by combining Terra CERES/MODIS-SSF shortwave (SW) flux and aerosol optical thickness (AOT) observations with the fractions of component AOTs from the GSFC/GOCART model. The derived global annual mean component ADRF is +0.08±0.17 W/m2 for black carbon, −0.52±0.24 W/m2 for organic carbon, −1.10±0.42 W/m2 for sulfate, −0.99±0.37 W/m2 for dust, −2.44±0.84 W/m2 for sea salt, and −4.98±1.67 W/m2 for total aerosols. The total ADRF has also been partitioned into anthropogenic and natural components with a value of −1.25±0.43 and −3.73±1.27 W/m2, respectively. The major sources of error in the estimates have also been discussed. The analysis adds an alternative technique to narrow the large difference between current model-based and observation-based global estimates of component ADRF by combining the satellite measurement with the model simulation.  相似文献   

7.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

8.
A laser spectrometer based on a continuous-wave thermoelectrically-cooled distributed feedback quantum cascade laser at ∼2308 cm−1 has been evaluated for measurement of 13CO2/12CO2 isotopic ratio (δ13C) changes in exhaled breath samples and in CO2 gas flows in the concentration range 1-5%. Mid-infrared CO2 absorption spectra were measured in a 54.2-cm long optical cell using balanced detection whereby the beam passing through the cell was ratioed against a reference beam split-off from the main beam before the cell. Signal-to-noise ratios (SNR) were estimated for CO2 concentration measurements determined from either absorption peak amplitude or absorption peak area. The highest SNR were achieved in the measurements based upon a fitted absorption peak area. Typical short-term δ13C precisions of 1.10/00 (1-s integration time) and 0.50/00 (8-12-s integration time) were estimated from the two-sample (Allan) variance plots of data recorded in the optical cell at a pressure of 20 Torr and with no active temperature stabilization of the cell and gas flow. The best precision of 0.120/00 was achieved for averaging 80 successive 1-s integration time measurements.  相似文献   

9.
Thermo-optical parameters of CdSe/ZnS core-shell nanoparticles suspended in toluene were measured using a thermal lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne laser at λp = 632.8 nm was used as the probe beam and an Ar+ laser (at λe = 514.5 nm) was used as the excitation beam for studies as a function of both core size and concentration of CdSe/ZnS nanocrystals. The fraction thermal load (φ) and radiative quantum efficiencies (η) of the CdSe/ZnS were determined. Dependence on core size (∼2-5 nm) and concentration (∼0.01-0.62 mg/ml) was observed for both φ and η parameters.  相似文献   

10.
HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50-100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ∼25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is .  相似文献   

11.
Altitude-resolved volume mixing ratio profiles of CFC-113 have recently become available on a global scale with the Atmospheric Chemistry Experiment (ACE) satellite mission. However, the accuracy of the retrieval is currently limited by the uncertainties on the spectroscopic parameters of CFC-113. This paper reports on the geometrical structure, harmonic frequencies and intensities in the mid-infrared region of the two conformers of CFC-113 and the evaluation of whether theoretical calculations reproduce measurements. The calculations are performed using density functional theory at the B3LYP/6-311+G(3df) level. The molecular geometry parameters, the enthalpy difference and the potential barrier between conformers are calculated. The harmonic frequency of the normal modes of vibration are presented and accurately compared to experimental data. Overtones and combination bands are assigned in the 1200-2500 cm−1 region.  相似文献   

12.
The electrical transport coefficients of anti-ferromagnetic CaMnO3 have been investigated by density functional theory calculation within generalized gradient approximation. The calculated transport coefficients exhibit the anisotropic nature, in agreement with its electronic states. The transport property results reveal the stronger carrier transport along the O1–Mn–O1 plane within the O–Mn–O octahedron, indicating that the Mnd and O1p orbitals are mainly responsible for electrical transport. The maximum power factor values as a function of relaxation time reach 8.4×1023 Wm−1 K−2 s−1, 7.9×1023Wm−1 K−2 s−1 and 4.9×1023 Wm−1 K−2 s−1 within c, a and b direction, respectively. The dimensionless figure of merit ZTxx, ZTyy as well as ZTzz is estimated with 1.28, 0.8 and 1.37 at 1000 K, respectively.  相似文献   

13.
We have investigated the optical properties of InAs/GaAs self-assembled quantum dots (QDs), grown at 500 °C using a low growth rate (0.014 ML/s), growth interruptions and a two-stage capping process. The samples exhibited large-size dots with densities in the range (3-4.5) × 109 cm−2. Macro-photoluminescence (macro-PL) measurements revealed the presence of five electronic sub-bands in the dots, with the ground state (GS) emission exhibiting a linewidth of ∼70 meV. Because of the dots large size and composition dispersions, associated with the growth method, it was possible to resolve single dots emissions using micro-PL (μ-PL) excitation in the barrier layers of the as-grown samples. The sharp PL lines were detected 60-140 meV above the GS peak energy. High-resolution resonant optical excitation of the dots PL evidenced that these fine lines originate from exciton complexes confined to the GS of individual dots. Non-resonant power dependence μ-PL spectroscopy results further confirmed the occurrence of both single exciton (X) and biexciton (XX) radiative recombinations. Finally, with increasing lattice temperature up to 95 K, PL emissions from most of these nanostructures suffered the usual thermal quenching, with activation energies (Ea) ranging between 12 and 41 meV. The relatively small values of Ea suggest that the growth technique implemented here favors the formation of defects centers in the vicinity of the QDs.  相似文献   

14.
Results are presented of a photoemission study of the electronic structure of SiON layers formed by a pulsed-RF decoupled plasma nitration (DPN) of ultra-thin SiO2 grown base layers approximately 1.0 nm thick. The optical thickness of these device grade nitrided dielectric layers was in the range 1.4-1.6 nm. X-ray photoelectron spectroscopy (XPS) studies indicate that the nitrogen is incorporated in a single chemical environment at concentration levels in the range 15-17%. Angle resolved XPS measurements show that the nitrogen is distributed through the layer, with the binding energy of the N 1s peak at 398.3 eV which is indicative of a Si3N4-like chemical species in an oxide environment. High resolution core level photoemission studies of the spin orbit stripped Si 2p4+ peak revealed full width half maximum values in the range 1.4-1.55 eV, which are significantly larger than the 1.15 eV value reported for SiO2 layers. Synchrotron radiation photoemission studies of the valence band spectra enable the valence band off-set at the Si/SON interface to be evaluated as 2.3 eV and to infer a conduction band off-set of 2.1 eV.  相似文献   

15.
We study the electrical properties and emission mechanisms of Zn-doped β-Ga2O3 film grown by pulsed laser deposition through Hall effect and cathodoluminescence which consist of ultraviolet luminescence (UV), blue luminescence (BL) and green luminescence (GL) bands. The Hall effect measurements indicate that the carrier concentration increases from 7.16×1011 to 6.35×1012 cm−3 with increasing a nominal Zn content from 3 to 7 at%. The UV band at 272 nm is not attributed to Zn dopants and ascribed as radiative electron transition from conduction band to a self-trapped hole while the BL band is attributable to defect level related to Zn dopant. The BL band has two emission peaks at 415 and 455 nm, which are ascribed to the radiative electron transition from oxygen vacancy (VO) to valence band and recombination of a donor–acceptor pair (DAP) between VO donor and Zn on Ga site (ZnGa) acceptor, respectively. The GL band is attributed to the phonon replicas’ emission of the DAP. The acceptor level of ZnGa is estimated to be 0.26 eV above the valence band maximum. The transmittance and absorption spectra prove that the Zn-doped β-Ga2O3 film is a dominantly direct bandgap material. The results of Hall and cathodoluminescence measurements imply that the Zn dopant in β-Ga2O3 film will form an acceptor ZnGa to produce p-type conductivity.  相似文献   

16.
A 4-(4,6-diaminopyrimidin-2-ylthio) substituted double-decker Lu(III) phthalocyanines (4) have been prepared and characterized by elemental analysis, IR, UV-vis and 1H NMR spectroscopies. The nonlinear refractive index, nonlinear absorption and the optical limiting (OL) performance of the compound 4 in a 0.5 mm spectroscopic cell in DMF solution were investigated by using 4 ns pulse laser at 532 nm. Z-scan experiments have been conducted between 0.24 and 2.39 GW/cm2 peak intensities for 10 Hz repetition rate and also between 2.39 and 23.89 GW/cm2 peak intensities for 1 Hz repetition rate. The thermal effect contributes to the nonlinear response of the material higher than 0.72 GW/cm2 peak intensity at 10 Hz. We measured the effective nonlinear refractive index of the material as 1.2×10−11 esu at 3.5×10−4 M concentration with the peak intensity less than 0.72 GW/cm2 and we found that nonlinear absorption was very small. On the other hand, when concentration is increased to 2.4×10−3 M material's nonlinear absorption becomes dominant mechanism for the nonlinear response and the compound 4 indicates OL behavior at 2.4×10−3 M concentration.  相似文献   

17.
The thermal oxidation of dc magnetron sputter deposited thin ZrN films in air in the temperature range of 100-475 °C has been studied by depth profiling N using nuclear reaction analysis (NRA) involving 15N(1H,αγ)12C resonance reaction and O using 3.05 MeV 16O(α,α)16O resonant scattering. The structural and morphological changes accompanying the process have also been investigated. NRA/backscattering spectrometry measurements show that oxidation results in the formation of ZrO1.8±0.1 at the surface. An interface consisting of Zr, O and N is also formed underneath the surface oxide. For an isothermal annealing, oxide layer as well as interface exhibits parabolic growth with the duration of annealing. The diffusion of oxygen through the already grown oxide layer (D = 5.6 × 10−14 cm2 s−1 at 475 °C) forms the rate-controlling step of oxidation. The diffusion may be facilitated by the high concentration of oxygen vacancies in the oxide layer. Glancing incidence X-ray diffraction (GIXRD) measurements indicate that zirconia films formed are phase-singular (monoclinic) and are textured in (2 0 0) and (3 1 1) orientations. Examination by scanning electron microscopy (SEM) reveals the formation of blisters on sample surfaces on prolonged oxidation. The blistering can be attributed to intrinsic growth stress arising due to the larger molar volume of zirconium oxide in comparison to zirconium nitride, a fact demonstrated by the depth profile measurements as well.  相似文献   

18.
We report on the growth and characterization of gold nitride thin films on Si 〈1 0 0〉 substrates at room temperature by reactive pulsed laser ablation. A pure (99.95%) Au target was ablated with KrF excimer laser pulses in nitrogen containing atmosphere (N2 or NH3). The gas ambient pressure was varied in the range 0.1-100 Pa. The morphology of the films was studied by using optical, scanning electron and atomic force microscopy, evidencing compact films with RMS roughness in the range 3.6-35.1 nm, depending on the deposition pressure. Rutherford backscattering spectrometry and energy dispersion spectroscopy (EDS) were used to detect the nitrogen concentration into the films. The EDS nitrogen peak does not decrease in intensity after 2 h annealing at 250 °C. Film resistivity was measured using a four-point probe and resulted in the (4-20) × 10−8 Ω m range, depending on the ambient pressure, to be compared with the value 2.6 × 10−8 Ω m of a pure gold film. Indentation and scratch measurements gave microhardness values of 2-3 GPa and the Young's modulus close to 100 GPa. X-ray photoemission spectra clearly showed the N 1s peak around 400 eV and displaced with respect to N2 phase. All these measurements point to the formation of the gold nitride phase.  相似文献   

19.
Trap levels in nominally undoped Ga2SeS layered crystals have been characterized by thermally stimulated current (TSC) measurements. During the measurements, current was allowed to flow along the c-axis of the crystals in the temperature range of 10-300 K. Two distinct TSC peaks were observed in the spectra, deconvolution of which yielded three peaks. The results are analyzed by curve fitting, peak shape and initial rise methods. They all seem to be in good agreement with each other. The activation energies of three trapping centers in Ga2SeS are found to be 72, 100 and 150 meV. The capture cross section of these traps are 6.7×10−23, 1.8×10−23 and 2.8×10−22 cm2 with concentrations of 1.3×1012, 5.4×1012 and 4.2×1012 cm−3, respectively.  相似文献   

20.
Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition   总被引:1,自引:0,他引:1  
p-Type ZnO thin films have been realized via monodoping antimony (Sb) acceptor by using pulsed laser deposition. The obtained films with the best electrical properties show a hole concentration in the order of 1018 cm−3 and resistivity in the range of 2-4 Ω cm. X-ray diffraction measurements revealed that all the films possessed a good crystallinity with (0 0 2)-preferred orientation. Guided by X-ray photoemission spectroscopy analysis and a model for large-sized-mismatched group-V dopant in ZnO, an SbZn-2VZn complex is believed to be the most possible acceptor in the Sb-doped p-type ZnO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号