首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic dehydrocondensation of methane to aromatics such as benzene and naphthalene was studied on the Mo carbide catalysts supported on micro- and mesoporous materials such as HZSM-5 (0.6 nm) and FSM-16 (2.7 nm). The Mo catalysts supported on H-ZSM-5 having appropriate micropores (0.6 nm size) and Si/Al ratios (20-70) exhibit higher yields (90-150 nmol/g-cat/s) and selectivities (higher than 74% on the carbon basis) in methane conversion to aromatic products such as benzene and naphthalene at 973 K and 1 atm, although they are drastically deactivated because of substantial coke formation. It was demonstrated that the CO/CO2 addition to methane effectively improves the catalyst performance by keeping a higher methane conversion and selectivities of benzene formation in the prolonged time-on-stream. The oxygen derived from CO and CO2 dissociation suppresses polycondensation of aromatic products and coke formation in the course of methane conversion. XAFS and TG/DTA/mass-spectrometric studies reveal that the zeolite-supported Mo oxide is endothermally converted under the action of methane around 955 K to nanosized particles of molybdenum carbide (Mo2C) (Mo-C, coordination number = 1,R- 2.09 å; Mo-Mo, coordination number = 2.3–3.5;R = 2.98 å). The SEM pictures showed that the nanostructured Mo carbide particles are highly dispersed on and inside the HZSM-5 crystals. On the other hand, it was demonstrated by IR measurements of pyridine adsorption that the Mo/HZSM-5 catalysts having the optimum SiO2/Al2O3 ratios around 40 show the maximum Brönsted acidity among the catalysts with the SiO2/Al2O3 ratios of 20–1900. There is a close correlation between the activity of benzene formation in the methane aromatization and the Brönsted acidity of HZSM-5 due to the bifunctional catalysis.  相似文献   

2.
Modified Y type catalyst (M-Y) shows great potential for the preparation of toluene attribute to catalyst topology and synergistic effect of Lewis acid and Brönsted acid in the alkylation reaction. However, it still remains a big challenge to build a reaction mechanism. Thereby, based on the study of HZSM-5, H-beta and M-Y catalysts structure and physical properties, a plausible reaction mechanism was proposed. The samples were characterized by X-ray diffraction, N2 adsorption/desorption, Fourier transform infrared absorption spectra and Pyridine adsorption infrared. The activity of catalysts was tested in benzene alkylation with methanol and was found to be in the following increasing order: Na-Y (no effect)?<?H-Y?<<?HZSM-5?<?H-beta?<?M-Y.  相似文献   

3.
张贺  邹永刚  彭悦 《催化学报》2017,38(1):160-167
由发电厂等固定源和柴油机等移动源排放的一氧化氮(NO)造成的环境污染问题日益严重.随着严苛的排放法规出台,NO排放控制技术受到越来越多关注.NH3选择性催化还原(SCR)技术是目前去除NO应用最为广泛的方法之一.商业催化剂V2O5-WO3/TiO2在300–400℃温度窗口内显示出优越的NO去除效率,但仍存在一些问题,如钒氧化物的毒性以及在高温时形成N2O和SO3.因此,开发出低钒或无钒的新型催化剂是解决上述问题的关键.CeO2和含铈材料是重要的催化剂载体,具有良好的还原能力和氧存储功能,因而广泛应用于催化领域.CeO2添加到商用催化剂中不仅可以降低钒用量,而且可以提高催化剂抗碱金属中毒能力.CeO2-WO3催化剂在200℃以上时比商用催化剂具有更宽的温度窗口,并展现出较高的抗SO2和碱金属中毒能力.CeO2-ZrO2催化剂通过添加过渡金属元素可以提升其SCR活性,在较宽的温度窗口内具有较高的催化活性.废气中SO2可导致催化剂失活,在实际应用中催化剂硫中毒是较为常见的催化剂失效原因.通常情况下,锰基和铁基催化剂最容易硫中毒.然而CeO2催化剂在硫酸化处理后却展现出良好的SCR活性.催化剂硫酸化主要包括气相、液相和前驱体硫化三种方法.三种方法各有异同,但在催化剂表面形成的硫物种都是SO42–.硫酸化可以增强Ce基催化剂的SCR活性,但是对于硫化引起的催化剂表面酸性、氧化还原性以及NO吸附脱附性质的详细研究报道较少.本文通过液相法对CeO2-ZrO2(CeZr)催化剂进行了硫酸化.XRD结果表明,硫酸化并未对催化剂结晶结构产生影响.TPD和TPR结果表明,硫酸化后催化剂(S-CeZr)表面酸性增强,但抑制了其氧化性.通过原位红外光谱技术系统研究了催化剂在SCR反应过程中表面物种的变化,结果发现,CeZr和S-CeZr的催化机理相同,不同的SCR活性主要是由表面酸性和氧化性引起的.CeO2基催化剂在不同温度窗口遵循不同反应机理.CeZr催化剂具有较强的氧化还原性,使其对NO和NH3具有很强的氧化能力,所以其在低于200℃时具有较好的SCR活性.而S-CeZr催化剂具有更多的Br?nsted酸性位,导致NO不易吸附在催化剂表面,所以其在低温时SCR活性较差,但在高温时(>200℃)具有优良的SCR活性.通过SCR活性和反应机理研究,发现在高温时(>200℃),表面酸性尤其是强酸Br?nsted酸性位在SCR反应中起到决定性作用;而在低温时(<200℃),酸性位对NH3分子较强的键合作用导致NH3难以被氧化,所以较强的酸性位对SCR活性具有抑制作用,而氧化还原性在低温时对SCR反应起到主要作用.同时,在高温时,较高的氧化性可使NH3被O2直接氧化,导致N2选择性降低.  相似文献   

4.
A Mo-promoted Zn/HZSM-5 catalyst was prepared by isometric impregnation method (IM). The physicochemical properties of catalysts were characterized by X-ray diffraction, registration of N2 adsorption-desorption isotherms, transmission electron microscopy, NH3 temperature-programmed desorption and IR spectroscopic study of pyridine adsorption. The results show that by doping zeolite with Mo species it is possible to tune the microstructures, acidity and crystallinity of the catalyst. Additionally, it was found that the 1%Mo(IM)–5%Zn(IE)/HZSM-5 catalyst had a high catalytic activity and stability for methanol to aromatics (MTA) reaction. The yield of aromatics reached 77.3% at 450°C and TOS = 3 h. When the TOS = 98 h, the yield of total aromatics remains at a 60.4% level. The lifetime of catalysts was influenced by the synergetic effect of Brønsted and Lewis acid sites, so the modification with Mo may bring an opportunity to prolong the lifetime of Zn/HZSM-5 catalyst in the MTA reaction. The metal components are sintered and lost in continuous reaction-regeneration cycles. Accordingly, the activity of deactivated catalyst cannot be completely restored to the initial level.  相似文献   

5.
Single‐atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on‐site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO2(111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO2(111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO2(111) surface and dissociative adsorption on STMA/CeO2(111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted–Evans–Polanyi principle. By combining the oxygen spillovers, single‐atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria‐supported single‐atom catalysts for reactions in which the dissociation of water plays an important role, such as the water–gas shift reaction.  相似文献   

6.
Zou  H.  Li  M.  Shen  J.  Auroux  A. 《Journal of Thermal Analysis and Calorimetry》2003,72(1):209-221
The surface acidity of SiO2, γ-Al2O3 and TiO2 supported vanadia catalysts has been studied by the microcalorimetry and infrared spectroscopy using ammonia as the probe molecule. The acidity in terms of nature, number and strength was correlated with surface structures of vanadia species in the catalysts, characterized by X-ray diffraction and UV-Vis spectroscopy. It was found that the dispersion and surface structure of vanadia species depend on the nature of supports and loading and affect strongly the surface acidity. On SiO2, vanadium species is usually in the form of polycrystalline V2O5 even for the catalyst with low loading (3%) and these V2O5 crystallites exhibit similar amount of Brönsted and Lewis acid sites. The 25%V2O5/SiO2 catalyst possesses substantial amount of V2O5 crystallites on the surface with the initial heat of 105 kJ mol-1 and coverage of about 600 mmol g-1 for ammonia adsorption. Vanadia can be well dispersed on g-Al2O3and TiO2 to form isolated tetrahedral species and polymeric two-dimensional network. Addition of vanadia on γ-Al2O3 results in the change of acidity from that associated with g-Al2O3 (mainly Lewis sites) to that associated with vanadia (mainly Brönsted sites) and leads to the decreased acid strength. The 3%V2O5/TiO2 catalyst may have the vanadia structure of incomplete polymeric two-dimensional network that possesses the Ti-O-V-OH groups at edges showing strong Brönsted acidity with the initial heat of about 140 kJ mol-1 for ammonia adsorption. On the other hand, the 10%V2O5/TiO2 catalyst may have well defined polymeric two-dimensional vanadia network, possessing V-O-V-OH groups that exhibit rather weak Brönsted acidity with the heat of 90 kJ mol-1 for NH3 adsorption. V2O5 crystallites are formed on the 25%V2O5/TiO2 catalyst, which exhibit the acid properties similar to those for 25%V2O5 on SiO2 and γ-Al2O3.  相似文献   

7.
A highly shape-selective and relatively long-lifetime HZSM-5-based catalyst (Zn-2P/HZSM-5) was prepared by chemical modification with both ZnSiF6·6H2O and H3PO4 solution. The phosphoric acid modification could effectively modulate the Brønsted acid strength of the HZSM-5 catalyst, which promotes the oligomerization, alkylation, cyclization, and hydrogen transfer reactions. The introduction of Zn-Lewis acid sites significantly improved the dehydroaromatization of higher olefins. All of these were very beneficial for the generation of BTX (i.e. benzene, toluene, and xylene) hydrocarbons in aromatization of methanol. The coke amount and the average rate of coke formation decreased over the Zn-2P/HZSM-5 catalysts, which may largely be ascribed to its lower strong acid sites and lower outer surface acidity. The catalytic performance of methanol aromatization showed that the Zn-2P/HZSM-5 catalyst exhibited the highest BTX selectivity of about 46.76% and the longest catalytic lifetime of about 498 h at T = 400 °C, P = 0.1 MPa, and weight hourly space velocity = 0.7 h−1.  相似文献   

8.
Finding novel catalysts for the direct conversion of CO2 to fuels and chemicals is a primary goal in energy and environmental research. In this work, density functional theory (DFT) is used to study possible reaction mechanisms for the conversion of CO2 and C2H6 to propanoic acid over a gold‐exchanged MCM‐22 zeolite catalyst. The reaction begins with the activation of ethane to produce a gold ethyl hydride intermediate. Hydrogen transfers to the framework oxygen leads then to gold ethyl adsorbed on the Brønsted‐acid site. The energy barriers for these steps of ethane activation are 9.3 and 16.3 kcal mol?1, respectively. Two mechanisms of propanoic acid formation are investigated. In the first one, the insertion of CO2 into the Au?H bond of the first intermediate yields gold carboxyl ethyl as subsequent intermediate. This is then converted to propanoic acid by forming the relevant C?C bond. The activation energy of the rate‐determining step of this pathway is 48.2 kcal mol?1. In the second mechanism, CO2 interacts with gold ethyl adsorbed on the Brønsted‐acid site. Propanoic acid is formed via protonation of CO2 by the Brønsted acid and the simultaneous formation of a bond between CO2 and the ethyl group. The activation energy there is 44.2 kcal mol?1, favoring this second pathway at least at low temperatures. Gold‐exchanged MCM‐22 zeolite can therefore, at least in principle, be used as the catalyst for producing propanoic acid from CO2 and ethane.  相似文献   

9.
With P(CH3)3 as the probe molecule adsorbed on titanium silicalite (TS-1) zeolite, the special and important role of T12 site in MFI-type zeolite was clearly elucidated. There are altogether three active sites present in TS-1 zeolite with Ti at the T12 site. Owing to the preferential adsorption of probe molecules on the first Brönsted acidic site, the Ti12 center will probably fail to show Lewis acidity. The ionic [HP(CH3)3]+ species can be stabilized by the first or second Brönsted acidic site, with the former energetically favored. The latter was formed through the transfer of the ionic [HP(CH3)3]+ species from the first to the second Brönsted acidic site.  相似文献   

10.
Effect of Alkali Contamination on the Catalytic Properties of Al2O3? Si2 Catalytic properties of amorphous Al2O3? SiO2 catalysts containing different amounts of Al2O3 in dehydration of isopropanol and cracking of cumene were examined after a defined contamination of the acid centers by sodium ethylate from alcoholic solution. In both reactions, the catalytic activity is decreased by treatment with sodium ethylate, the cracking of cumene being suppressed at a lower alkali concentration than the dehydration of isopropanol. In dehydration of isopropanol, the dependence of the catalytic activity on the alkali content is influenced strongly by the Al2O3 content of the catalysts. In the cracking of cumene, strongly acid Brönsted centers are active, whereas the dehydration of isopropanol proceeds by joint action of acid Lewis or Brönsted centers, respectively, with basic centers at the surface of the catalyst (hydroxide groups or oxygen anions).  相似文献   

11.
Selective synthesis of specific value-added aromatics from CO2 hydrogenation is of paramount interest for mitigating energy and climate problems caused by CO2 emission. Herein, we report a highly active composite catalyst of ZnZrO and HZSM-5 (ZZO/Z5-SG) for xylene synthesis from CO2 hydrogenation via a coupling reaction in the presence of toluene, achieving a xylene selectivity of 86.5 % with CO2 conversion of 10.5 %. A remarkably high space time yield of xylene could reach 215 mg gcat−1 h−1, surpassing most reported catalysts for CO2 hydrogenation. The enhanced performance of ZZO/Z5-SG could be due to high dispersion and abundant oxygen vacancies of the ZZO component for CO2 adsorption, more feasible hydrogen activation and transfer due to the close interaction between the two components, and enhanced stability of the formate intermediate. The consumption of methoxy and methanol from the deep hydrogenation of formate by introduced toluene also propels an oriented conversion of CO2.  相似文献   

12.
《化学:亚洲杂志》2017,12(17):2271-2277
Development of inexpensive, easily prepared, non‐toxic, and efficient catalysts for the cycloaddition of CO2 with epoxides to synthesize five‐membered cyclic carbonates is a very attractive topic in the field of CO2 transformation. In this work, we conducted the first work on the cycloaddition of CO2 with epoxides to produce cyclic carbonates catalyzed by a binary catalyst system consisting of KI and boron phosphate (BPO4), which are both inexpensive and non‐toxic, and various corresponding cyclic carbonates could be produced with high yields (93–99 %) at 110 °C with a CO2 pressure of 4 MPa under solvent‐free conditions. In the BPO4/KI catalyst system, BPO4, a Brønsted and Lewis acid hybrid, played the role of activating the epoxy ring through the formation of hydrogen bonds with Brønsted acidic sites and the interaction with Lewis acidic sites simultaneously, and thus enhanced the activity of KI for the cycloaddition of CO2 with epoxides significantly. Additionally, the activity of the BPO4/KI catalyst system showed no noticeable decrease after being reused five times, indicating that the BPO4 was stable under the reaction conditions.  相似文献   

13.
Using trimethylphosphine (TMP) and d5-pyridine(deuterated pyridine) as the basic probe molecules, the concentrations of Brönsted acid sites on both HY zeolite and dealuminated HY zeolite have been quantitatively determined using solid-state 1H and 31P magic-angle spinning (MAS) NMR. After adsorption of the probe molecules, the concentration of Brönsted acid sites on the dealuminated HY zeolite increases by about 25%, whereas that in the parent HY sample remains almost unchanged. The increase in the concentration of Brönsted acid sites is due to the appearance of base-induced Brönsted acid sites in the dealuminated HY zeolite. The terminal SiOH in the vicinity of the aluminum atom is “induced” to form a bridging hydroxyl group (SiOHAl) in the presence of the basic probe molecules. The mechanism of formation of the induced Brönsted acid sites has also been discussed.  相似文献   

14.
Studies on Oxide Catalysts. XXV. Catalytic Activity and Aging Properties of Modified Mordenites in the Cracking of n-Octane MeH-mordenites (Me = Li, K, Mg, Ca, Ba) were prepared by ion exchange starting with H-mordenite (SiO2/Al2O3 mole ratio = 14). To characterize these samples the cracking of n-octane was used as catalytic test reaction. Surface OH groups and the adsorption of NH3 on these samples were investigated by i. r. spectroscopy. Unaffected by the kind of the exchanged cation the Brönsted acidity of the H-mordenite decreases monotonously with increasing content of the incorporated cation. The catalytic activity and (to a much higher degree) the rate of deactivation by coking during the reaction decrease as the Brönsted acidity decreases. The strong dependence of the Brönsted acidity on the deactivation rate points to a multi-site mechanism of the coking process.  相似文献   

15.
The activities of the copper-based catalysts, Cu2+ /SiO2,Cu2+ /Vycor and Cu2+/ZSM-5, and V2O5/TiO2 for NO conversion to N2 in the presence or absence of NH3 and/or O2 have been investigated. The Cu2+ /ZSM-5 catalyst exhibited the highest activity, even higher than that of V2O5/TiO2. Photoluminescence studies of the dehydrated copper-based catalysts have suggested that the copper ions anchored onto ZSM-5 locate as isolated copper species near Brönsted sites in the zeolite channels while the copper ions anchored onto Vycor and SiO2 locate mainly as copper dimer forms. These results suggest the role of copper ions which are stabilized with near-lying oxygen vacancies created by dehydroxylation of the zeolite, in NO conversion. As a result, it may be concluded that the isolated copper ions near Brönsted sites play a significant role in NO conversion but dimeric or polynuclear copper species are less effective for the reaction.  相似文献   

16.
Spherical mesoporous silica–alumina aerogel like beads based on sol–gel technology and the drop wise addition have been synthesized and used as catalyst support for phosphotungstic acid (PWA). Their catalytic performances in the isopropylation of naphthalene with isopropanol were investigated in a batch reactor. It was found that PWA was highly dispersed on the silica–alumina support and their Keggin structure can be retained. In addition, PWA/SiO2–Al2O3 catalyst showed high surface area, both of Lewis acid sites and Brönsted acid sites. Because of having more Brönsted acid sites, silica–alumina supported acid catalysts showed much higher conversion (87.97 %) and selectivity to diisopropylnaphthalenes (41.41 %) and β,β-products (59.82 %) than pure acid and reactive supports in the isopropylation of naphthalene. The catalytic behavior has been discussed in relation with the physical chemical properties of catalysts, reaction and activation temperature and reaction time.  相似文献   

17.
The acidic properties of both HZSM-5 and SiO2 supported MoO3 and carburized MoO3 have been investigated by FTIR spectroscopy. Deposition of Mo caused the consumption of Brønsted acidic OH groups of HZSM-5 as shown by the changes in the ν(OH) region of the spectra and also by pyridine and low temperature CO adsorption measurements. Carburization of the sample did not result in regeneration of acidic OH groups of the zeolite. Mo reacted with OH groups during its deposition on SiO2. The results of both pyridine and CO adsorption measurements did not indicate the generation of Brønsted acidic sites on MoO3/SiO2 and carburized MoO3/SiO2. Lewis acid sites are formed, however, upon the deposition of Mo. Carburization led to stronger Lewis centers, which are probably the active sites—together with the carbide phase—in methane aromatization on MoO3/SiO2.  相似文献   

18.
The Beckmann rearrangement of cyclohexanone oxime (CHO) to ?‐caprolactam (?‐C) was studied in a plug flow reactor at 300–400°C under atmospheric pressure by using Hβ, ZSM‐5, and alumina pillared montmorillonite. With Hβ(X) Y zeolites, raising the SiO2/Al2O3 molar ratio (X) results in the enhancement of catalyst acid strength with concomitant decrease of the total acid amount. In creasing the calcination temperature (Y) causes remarkable diminution of catalyst surface area, acid strength, and acid amount. A similar trend was found for AlPMY catalysts. In there action of CHO, the initial catalytic activity correlates well with the total acid amount of various catalysts except for Hβ(10) Y (Y > 600°C). The reaction proceeds on both Brönsted and Lewis acid sites and the catalyst deactivation most likely occurs at the strong Brönsted acid sites. The effect of solvents in the feed on the catalytic results was also investigated; it was found that polar solvents such as ethanol or n‐butanol give high ?‐C yield and longer catalyst life time. In the reaction of CHO/C2H5OH over Hβ(10)800 at 400°C and W/F 74.6 gh/mol, the CHO conversion and ?‐C yield remain 100% and 92%, respectively, for at least 20 h time‐on‐stream. The reaction paths and the mechanism for ?‐C formation are proposed.  相似文献   

19.
The CeO2, CeO2‐ZrO2 and CeO2‐WO3 catalysts were prepared by hydrothermal method and used to the selective catalytic reduction of NOx by NH3. The addition of ZrO2 or WO3 into CeO2 was favorable for pore structure, and then improved the number of active sites. Besides, the introduction of ZrO2 into CeO2 could improve the Lewis acid sites while WO3 could contribute to the generation of Brønsted and Lewis acid sites, which could improve the catalytic performance and N2 selectivity. The CeO2‐WO3 catalyst exhibited optimal catalytic activity with above 90% NOx conversion performance at 220–425 °C and approximately 100% N2 selectivity at 150–425 °C.  相似文献   

20.
高琳心  蒋新  郭森 《物理化学学报》2001,30(7):1303-1308
采用吸附相反应技术制备得到了MnOx/CeO2/SiO2催化剂,通过X 射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、紫外激光拉曼(Raman)等手段对催化剂进行了表征. HRTEM分析表明活性组分MnOx与CeO2都均匀分布在载体SiO2表面;XRD分析表明Mn3O4特征峰随着CeO2含量的增加逐渐减小至完全消失,CeO2的加入降低了MnOx的结晶程度,增加了MnOx的分散性;Raman光谱表明催化剂表面的Mn离子能够进入CeO2晶格,激发出空穴氧,随着CeO2负载量的增加,催化剂氧空穴浓度先升高后降低.以NH3为还原剂,考评催化剂的NOx低温选择性催化还原(SCR)性能,催化剂催化活性随CeO2负载量增加先升高后降低,与催化剂氧空穴浓度变化规律一致,说明催化剂活性受氧空穴浓度影响,氧空穴浓度升高,催化剂催化活性升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号