共查询到20条相似文献,搜索用时 2 毫秒
1.
光纤陀螺温度误差模型研究 总被引:1,自引:0,他引:1
对由Shupe效应引起的误差进行了理论分析,光纤环径向温阶会产生光纤陀螺零偏漂移。设计和完成了测量环境温度对光纤温度的影响试验,环境温度变化率与Shupe效应误差存在线性关系。在此基础上,设计和完成了在测量环境温度变化时光纤陀螺输出的试验,分别使用环境温度变化率的一阶、二阶和三阶项对陀螺输出的变化趋势进行建模,对模型的有效性进行了验证。结果表明:一阶模型与二阶、三阶模型相比,模型更简单、稳定性更高,能够准确地反映由Shupe效应引起的误差值,补偿效果好,与理论分析结果相符。 相似文献
2.
针对光纤陀螺温度稳定性低、受环境温度影响参数变化,导致使用精度不高的问题,提出了一种光纤陀螺静态温度综合误差建模补偿方法。综合考虑温度、光纤陀螺标度因数非线性以及零偏漂移的影响,建立了以时间、温度和输入角速率为参量的光纤陀螺静态温度混合模型;采用分类拟合方法确定模型阶次,辨识模型参数;基于温度速率实验,提出迭代补偿算法。实验结果表明,经过综合误差补偿后的光纤陀螺消除了温度和标度因数非线性对其性能的影响,使它在全温度和全速率下的测量精度得到了极大提高,从而证明了该方法的有效性。 相似文献
3.
为了提高光纤陀螺的测量精度,提出了一种基于小波神经网络的误差补偿方法。首先使用小波分析中的Mallat分解算法提取出陀螺信号中的主趋势项,对其误差余项进行重构。然后将重构信号作为小波神经网络的目标输出,将原始陀螺信号作为训练样本。为了提高小波神经网络的训练速度同时防止其陷入局部极小值,采用增加动量因子和自适应调整学习速率的方法来改进训练方法。训练后建立的神经网络模型对光纤陀螺误差具有良好的估计能力。结果表明,经过小波神经网络方法补偿后,光纤陀螺的输出精度达到了0. 019 4°/s,光纤陀螺的测量性能得到了提高。 相似文献
4.
针对氧乐果合成过程中温度控制具有参数时变、时滞后、非线性的特点,提出了一种基于改进粒子群算法的支持向量回归的建模方法。对于支持向量回归模型,3个参数(ε,C,γ)的选取很大程度上决定了其拟合的精度和泛化能力的好坏,采用改进的粒子群算法对参数(ε,C,γ)进行同时寻优,建立了改进的氧乐果合成过程PSO-SVR回归模型,该模型具有很好的学习能力和推广能力。实验结果表明,模型较好地体现了系统的动态特性,可用于氧乐果合成过程的模型预估控制,提高系统的控制品质。 相似文献
5.
6.
7.
8.
分析了温度测量误差对环形激光陀螺(RLG)零偏补偿精度的影响,通过仿真,在动态温度模型中,发现温度测量误差主要通过温度变化率对补偿结果产生影响,提出了该模型在陀螺零偏动态温度补偿中是否考虑温度测量误差的标准。仿真结果表明,对使用的温度补偿模型与温度传感器而言,在温度补偿精度明显小于0.001°/h时,要考虑温度测量误差的影响。 相似文献
9.
10.
通过对光纤陀螺温度漂移的剖析推导,分析了温度扰动引起陀螺漂移误差的深层次原因,并结合过程相关性理论,对各个温度项影响因子与光纤陀螺实际输出相关性进行验证分析,提出一种同时考虑温度、温变速率、温度梯度以及三者乘积耦合项的算法补偿模型。对该模型的补偿效果进行离线补偿验证,结果表明,采用该算法补偿模型能明显抑制光纤陀螺的变温零漂。为了进一步验证该模型的有效性,把离线获得的补偿参数载入陀螺存储器,经过多样本实验测试,补偿后可有效提高光纤陀螺的全变温零偏稳定性,验证了该补偿算法在工程上的可实施性和推广价值。 相似文献
11.
光路系统的偏振误差极大地制约着双光程光纤陀螺精度的提高。为了提高新型双光程光纤陀螺的精度,利用相干矩阵和琼斯矩阵对光路中光学器件和熔接点的光学参数进行描述,通过分析顺时针光波与逆时针光波中耦合次波列与主波列间的相干叠加机理,建立了相应的偏振误差模型。利用Matlab以接近于工程实际的参数设置,对光路系统中熔接点、各光学器件缺陷对偏振误差的影响进行了仿真分析,并在此基础上提出了一种可有效抑制双光程光纤陀螺偏振误差的尾纤匹配法。仿真结果表明,通过适当的尾纤长度匹配,双光程光纤陀螺的偏振误差由0.145°/h减小为0.017°/h,其随温度变化的峰谷值也由0.25°/h减小至3×10-4°/h,双光程光纤陀螺的偏振误差得到有效抑制。 相似文献
12.
位移测量是结构健康检测的重要参量之一.本文提出了一种双悬臂梁粘贴光纤光栅的位移传感器,它将位移变化转换成两只光纤光栅的波长移动,实现对位移量的绝对测量.通过引入对称补偿光纤光栅的方法解决了温度与位移交叉敏感的问题.推导了位移传感器的工作原理,完成了相关实验,并分析了传感器所产生误差的来源.实验结果表明,在量程为20 mm的时候,位移灵敏度为123 pm/mm,温度补偿前,温度对位移的影响是234.9 μm/℃;温度补偿后,温度对位移的影响为17 μm/℃.本位移传感器量程大、线性好、准确度高,不易受恶劣环境影响. 相似文献
13.
14.
基于温度激励的光纤陀螺光纤环瞬态特性检测 总被引:2,自引:1,他引:2
光纤陀螺基于萨尼亚克效应测量垂直于光纤环平面的敏感轴方向上的旋转分量。光纤环是光纤陀螺的核心部件,光纤环的缠绕质量直接影响着光纤陀螺的整体性能,对光纤环的缠绕质量全面检测十分必要。针对目前光纤环检测手段的局限性,提出了一种基于温度激励的光纤陀螺光纤环瞬态特性检测方法,全面表征了光纤环的缠绕质量。建立了光纤环柱面坐标三维计算模型,采用有限元方法定量分析光纤环不对称度和局部温度激励位置精度对光纤环瞬态响应的影响,同时开展了光纤环温度激励相应实验,实验结果与光纤环三维物理模型数值计算结果相一致,在理论和实验上验证了光纤环瞬态特性检测方法的可行性。 相似文献
15.
16.
17.
光纤陀螺随机漂移的在线建模及实时滤波 总被引:1,自引:0,他引:1
针对高精度光纤陀螺(FOG)随机误差,在分析时间序列相关函数的基础上,得出其时间相关性呈较弱现象,若采用传统方法辨识模型,则容易造成误判.在此情况下,使用适用性更广泛的AIC准则分别确定AR及ARMA模型的最佳阶数,继而采用卡尔曼滤波算法,最后以滤波后零偏稳定性改善情况来选择作为FOG随机误差的数学模型.验证结果表明:... 相似文献
18.
建立通用而精确的太阳电池热模型对光伏系统的建模、输出功率与转换效率的损失分析至关重要. 基于复杂的太阳电池温度机理, 分别研究了太阳电池温度的稳态热模型(steady state thermal model, SSTM)和支持向量机(support vector machines, SVM) 方法建立的精确预测热模型. 首先, 基于空气温度、太阳辐射强度、风速3个最主要因素与太阳电池温度的近似线性关系, 在已有SSTM的基础上, 建立并校正了太阳电池的SSTM并采用差分进化算法提取模型的未知参数. 其次, 为提高SVM的模型预测精度, 采用粒子群优化(particle swarm optimization, PSO) 算法对SVM的核参数和惩罚因子进行动态寻优, 在确定输入/输出样本集并划分训练集和测试集的基础上, 建立了基于粒子群优化支持向量机(PSO-SVM)的太阳电池温度精确预测热模型. 最后, 搭建实验平台, 在实验操作过程中减弱空气湿度、太阳入射角和热迟滞效应等因素对太阳电池温度的耦合. 通过实验对比表明, 建立的预测热模型性能可靠、全面、简洁, 其参数寻优算法优于遗传算法和交叉校验法, 模型预测精度优于反向传播神经网络(back propagation neural network) 和SSTM. 相似文献
19.
20.
根据光纤陀螺输出信号的特点和应用环境的要求,在Mallat小波变换的基础上,研究了一种多算法融合的实时滤波算法.该算法在光纤陀螺刚启动,数据量偏少时,通过IIR滤波器进行滤波|采样数据量足够多时,通过施加滑动数据窗来实现小波实时去噪,采用周期对称延拓的方法去除小波去噪的边界问题,可有效去除光纤陀螺输出信号中高频部分的噪音,提高滤波效果,抑制陀螺的随机漂移.通过实验验证了该方法对陀螺输出信号进行滤波的可行性和有效性. 相似文献