首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

2.
风力机叶片的三维非定常气动特性估算   总被引:1,自引:0,他引:1  
结合动量-叶素理论、非定常空气动力和动态失速模型来计算风力机叶片的二维非定常气动特性,并在此基础上经过适当修正后考虑三维旋转效应的非定常气动特性。分析比较二维和三维两种计算结果,给出更为合理的计算叶片非定常气动特性的方法。计算结果表明,风力机叶片的三维非定常气动特性计算结果与二维时的计算结果相比有较大改善。  相似文献   

3.
In this paper the effect of system parametric uncertainty on the stall flutter bifurcation behavior of a pitching airfoil is studied. The aerodynamic moment on the two-dimensional rigid airfoil with nonlinear torsional stiffness is computed using the ONERA dynamic stall model. The pitch natural frequency, a cubic structural nonlinearity parameter, and the structural equilibrium angle are assumed to be uncertain. The effect on the amplitude of the response, the bifurcation of the probability distribution, and the flutter boundary is considered. It is demonstrated that the system parametric uncertainty results already in 5% probability of pitching stall flutter at a 12.5% earlier position than the point where a deterministic analysis would predict unstable behavior. Probabilistic collocation is found to be more efficient than the Galerkin polynomial chaos method and Monte Carlo simulation for modeling uncertainty in the post-bifurcation domain.  相似文献   

4.
A direct force measurement technique employing piezoelectric load cells is used to experimentally investigate a two-dimensional airfoil (NACA 0012) undergoing dynamic stall. The load cells are installed at each end of the airfoil and give the force response in two directions in the plane normal to the airfoil axis during oscillations. Experiments are carried out at a Reynolds number based on the airfoil chord equal to 7.7×104, and at four reduced frequencies, k=0.005, 0.01, 0.02, and 0.04. Phase-averaged lift of the airfoil undergoing dynamic stall is presented. It is observed that hysteresis loops of the lift occur both when the airfoil is pitched to exceed its static stall limit and when it is still within its static stall limit, and they grow in size with increasing k at the same pitching mean angle of attack and pitching amplitude. Both the lift and the drag induced by the pitching motion are further analyzed using the methods of higher order correlation analysis and continuous wavelet transforms to undercover their nonlinear and nonstationary features, in addition to classical FFT-based spectral analysis. The results are quantitatively illustrated by an energy partition analysis. It is found that the unsteady lift and drag show opposite trends when the airfoil undergoes transition from the pre-stall regime to the full-stall regime. The degree of nonlinearity of the lift increases, and the lift show a nonstationary feature in the light-stall regime, while the nonlinearity of the drag decreases, and the drag shows nonstationary feature in both the light-stall and the full-stall regimes. Furthermore, the lift and the drag have significant nonlinear interactions as shown by the correlation analysis in the light-stall regime.  相似文献   

5.
This study presents the influence of pitch angle of an airfoil on its near-field vortex structure as well as the aerodynamic loads during a dynamic stall process. Dynamic stall behavior in a sinusoidally pitching airfoil is usually analyzed at low to medium reduced frequencies and with the maximum angle of attack of the airfoil not exceeding 25°. In this work, we study dynamic stall of a symmetric airfoil at medium to high reduced frequencies even as the maximum angle of attack goes from 25° to 45°. The evolution and growth of the laminar separation bubble, also known as a dynamic stall vortex, at the leading edge and the trailing edge are studied as the pitch cycle goes from the minimum to the maximum angle of attack. The effect of reduced frequencies on the vortex structure as well as the aerodynamic load coefficients is investigated. The reduced frequency is shown to be a bifurcation parameter triggering period doubling behavior. However, the bifurcation pattern is dependent on the variation of the pitch angle of incidence of the airfoil.  相似文献   

6.
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the prac-ticability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disinte-grates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17%occurs with a triangular shape, while the max-imum increase in aerodynamic efficiency (lift-to-drag ratio) of around 10%happens with a rectangular shape at an angle of attack of 2.26?.  相似文献   

7.
合成射流对失速状态下翼型大分离流动控制的试验研究   总被引:1,自引:0,他引:1  
为研究低速状态合成射流在抑制翼型气流分离和推迟失速方面的控制机理, 开展了NACA0021 翼型失速特性射流控制的风洞试验研究. 通过系统性的模型测力、翼型瞬态流场粒子图像测速和边界层速度测定的对比试验, 深入探索了合成射流各参数对翼型失速特性控制效果的影响规律. 试验结果表明射流偏角在翼型升力和失速迎角控制方面的效果对射流动量系数较为敏感: 当动量系数较大时, 近切向射流的控制效果更好. 射流动量系数为0.033 时, 偏角30°的射流使得翼型升力系数峰值提高23.56%, 失速迎角增大5°; 而动量系数较小时, 偏角较大的射流能够获得最佳控制效果. 射流动量系数为0.0026 时, 法向射流对翼型最大升力系数控制效果最好(提高9.2%).   相似文献   

8.
Insect wings usually are flexible and deform significantly under the combined inertial and aerodynamic load. To study the effect of wing flexibility on both lift and thrust production in forward flight, a two-dimensional numerical simulation is employed to compute the fluid–structure interaction of an elastic wing section translating in an inclined stroke plane while pitching around its leading ledge. The effects of the wing stiffness, mass ratio, stroke plane angle, and flight speed are considered. The results show that the passive pitching due to wing deformation can significantly increase thrust while either maintaining lift at the same level or increasing it simultaneously. Another important finding is that even though the wing structure and actuation kinematics are symmetric, chordwise deformation of the wing shows a larger magnitude during upstroke than during downstroke. The asymmetry is more pronounced when the wing has a low mass ratio so that the fluid-induced deformation is significant. Such an aerodynamic cause may serve as an additional mechanism for the asymmetric deformation pattern observed in real insects.  相似文献   

9.
等速上仰翼型动态失速现象研究   总被引:9,自引:0,他引:9  
白鹏  崔尔杰  周伟江  李锋 《力学学报》2004,36(5):569-576
翼型大迎角绕流的静态失速将造成升力突降和气动性能急剧恶化,但利用非定常运动所产生 的动态失速效应,可以大大地延缓气流分离和失速现象的发生. 采用Rogers发 展的双时间步Roe格式,求解拟压缩性修正不可压N-S方程. 数值模拟了低雷诺数 ($Re=4.8 \times 10^{4}$)条件下NACA0015翼型作等速上仰($\alpha =0^{\circ} \sim 60^{\circ}$)的动态失速过程,同Walker的试验结果比 较,验证了计算结果的正确性. 研究了该过程中主涡、二次涡和三次涡的发展,升 力系数随攻角变化,以及不同上仰速度对动态失速效应所造成的影响.  相似文献   

10.
低雷诺数下柔性翼型气动性能分析   总被引:1,自引:0,他引:1  
基于流固耦合方法对吸力面5%至95%弦长处为三段柔性结构的NACA0012翼型绕流进行了数值模拟,研究了不同弹性模量下柔性翼型的气动性能和结构响应.结果表明:在大攻角下,翼面变形影响着翼型表面的非定常流场,起到延缓失速和提高升力的作用;失速后柔性翼的升力系数下降得较为缓慢,且柔性越大,升力系数下降得越平缓;适当减小弹性模量能够提高翼型的气动性能,然而弹性模量过小反而不利于翼型气动性能的提升,并且翼面会产生大幅度的振动.  相似文献   

11.
A three-dimensional numerical simulation of a four-wing (two wings on each side, one on top of another) flapping micro-aerial vehicle (FMAV), known as the Delfly micro, is performed using an immersed boundary method Navier–Stokes finite volume solver at Reynolds numbers of 5500 (forward flight condition). The objective of the present investigation is to gain an insight to the aerodynamics of flapping wing biplane configuration, by making an analysis on a geometry that is simplified, yet captures the major aspects of the wing behavior. The fractional step method is used to solve the Navier–Stokes equations. Results show that in comparison to the Delfly II flapping kinematics (a similar FMAV configuration but smaller flapping stroke angles), the Delfly-Micro flapping kinematics provides more thrust while maintaining the same efficiency. The Delfly-Micro biplane configuration generates more lift than expected when the inclination angle increases, due to the formation of a uniform leading edge vortex. Estimates of the lift produced in the forward flight conditions confirm that in the current design, the MAV is able to sustain forward flight. The potential effect of wing flexibility on the aerodynamic performance in the biplane configuration context is investigated through prescribed flexibility in the simulations. Increasing the wing׳ spanwise flexibility increases thrust but increasing chordwise flexibility causes thrust to first increase and then decrease. Moreover, combining both spanwise and chordwise flexibility outperforms cases with only either spanwise or chordwise flexibility.  相似文献   

12.
对于翼面变形速度远小于来流速度情况下的儒可夫斯翼型亚音速绕流问题,通过仿射变换将可压缩流动转换成不可压缩流动,将解析解和离散涡方法相结合计算变形机翼的不可压缩流动速度场,再利用逆变换得到变形机翼的亚音速流动速度场,进而分析非定常气动力特性,建立变形机翼的准定常升力系数和非定常附加升力系数在可压缩和不可压缩两种状态下的简单近似对应关系。计算结果显示变形机翼的非定常气动升力近似等于准定常计算结果叠加上虚拟质量力导致的非定常附加升力,该非定常附加升力随翼型变形速率呈线性关系,由机翼当前时刻飞行姿态、翼型及其变形速率确定,与具体变形历史过程无关。低来流马赫数时虚拟质量力导致的非定常效应显著,高亚音速流动时准定常升力起主导作用。同时还分析了不同马赫数下机翼往复变形过程中升力的变化特性,指出尽管高亚音速变形机翼的气动升力近似等于准定常气动升力,但不能忽视非定常附加升力的影响,非定常附加升力将导致完成往复变形需要外界输入正比于Ma∞/[(1-Ma2∞)]的功。  相似文献   

13.
风力机叶片翼型动态试验技术研究   总被引:9,自引:7,他引:2  
风力机叶片动态振荡过程往往伴随着俯仰和横摆同时进行, 以前对许多动态问题不清楚的阶段, 工程上不惜以增加叶片重量为代价而采用偏安全的设计, 通常忽略横摆振荡的影响; 大型风力机设计对获取翼型更加全面、准确的动态载荷提出了更高要求, 研究横摆振荡对翼型动态气动特性的影响规律具有重要意义. 本文首次开展翼型横摆振荡动态风洞试验研究, 采用“电子凸轮”技术代替机械凸轮实现了振荡频率和振荡角度的无级变化, 基于设计的电子外触发装置实现了对动态流场的实时测量, 实现了风洞来流、模型角位移和动态压力数据的同步采集, 分别开展了翼型静态测压、俯仰/横摆动态测压、粒子图像测速和荧光丝线等试验研究, 试验结果准度较高、规律合理; 分析了动态试验洞壁干扰影响机制. 研究表明, 横摆振荡翼型的气动曲线也存在明显迟滞效应; 随着振荡频率升高, 翼型俯仰和横摆振荡下的气动迟滞性均增强; 翼型俯仰振荡正行程的动态失速涡破裂有所延迟; 洞壁与模型端部交界处的强三维效应对翼型压力分布影响较大; 建立的横摆振荡试验技术可为风力机动态掠效应的研究提供技术支撑.   相似文献   

14.
孙茂  王家禄  连淇祥 《力学学报》1992,24(5):517-521
本文通过在翼型上游和翼表面边界层内放置产生氢气泡的铂丝的方法,清楚地显示了上仰翼型分离剪切层的结构。揭示了在不同的翼型转动角速度范围内,存在三种分离流结构。研究了失速涡,剪切涡及起动涡随时间的演变,它们之间的相互作用和转动角速度等参数的影响,分离剪切层的流动显示结果,结合翼型上气动力与流场中涡量矩的关系的理论,定性地解释了上仰翼型产生非定常高升力的原因。  相似文献   

15.
This research numerically elucidates the effects of suction and blowing on the enhancement of unsteady aerodynamic characteristics of flows and their corresponding impact on stall delay over the well-known NACA0012 airfoil at various angles of attack (\( 12 \le {\text{AOA}} \le 20 \)) under low Reynolds numbers. For this purpose, an in-house solver written in C++ is developed. The numerical code utilizes the Jameson’s cell-centered finite volume numerical method accompanied by a progressive power-law preconditioning approach to suppress the stiffness of the governing equations. Many numerical simulations are performed over the suction-blowing control parameters, namely, the slot location (\( L_{j} \)), suction/blowing amplitudes (\( A_{j} \)), and suction/blowing angle (\( \theta_{j} \)). Most of the analyses are based on the measurements of the unsteady aerodynamic characteristics behaviors (such as lift, drag, moment coefficients, and stall phenomena) over the airfoil. The numerical results confirm that the unsteady behavior of the flow (vortex shedding) is weakened or approximately removed when suction is used, especially near the leading edge. In all of the test cases, the ratio of the average lift coefficient to the average drag coefficient increases with increasing suction and blowing amplitudes, except in the case of perpendicular blowing. Furthermore, the blowing is more sensitive to the blowing angle compared to the suction. From the suction and blowing results, it is concluded that the former has a more positive impact on the lift and drag characteristics, especially in the case of incompressible flow at Low-Reynolds regimes.  相似文献   

16.
The growing applications of low Reynolds number (LRN) operating vehicles impose the need for accurate LRN flow solutions. These applications usually involve complex unsteady phenomena, which depend on the kinematics of the vehicle such as pitching, plunging, and flapping of a wing. The objective of the present study is to address the issues related to LRN aerodynamics of a harmonically pitching NACA0012 airfoil. To this end, the influence of unsteady parameters, namely, amplitude of oscillation, d, reduced frequency, k, and Reynolds number, Re, on the aerodynamic performance of the model is investigated. Computational fluid dynamics (CFD) is utilized to solve Navier–Stokes (N–S) equations discretized based on the Finite Volume Method (FVM). The resulting instantaneous lift coefficients are compared with analytical data from Theodorsen’s method. The simulation results reveal that d, k, and Re are of great importance in the aerodynamic performance of the system, as they affect the maximum lift coefficients, hysteresis loops, strength, and number of the generated vortices within the harmonic motion, and the extent of the so-called figure-of-eight phenomenon region. Thus, achieving the optimum lift coefficients demands a careful selection of these parameters.  相似文献   

17.
The results of computational fluid dynamics (CFD) simulations in two and three spatial dimensions are compared to pressure measurements and particle image velocimetry (PIV) flow surveys to assess the suitability of numerical models for the simulation of deep dynamic stall experiments carried out on a pitching NACA 23012 airfoil. A sinusoidal pitching motion with a 10° amplitude and a reduced frequency of 0.1 is imposed around two different mean angles of attack of 10° and 15°. The comparison of the airloads curves and of the pressure distribution over the airfoil surface shows that a three-dimensional numerical model can better reproduce the flow structures and the airfoil performance for the deep dynamic stall regime. Also, the vortical structures observed by PIV in the flow field are better captured by the three-dimensional model. This feature highlighted the relevance of three-dimensional effects on the flow field in deep dynamic stall.  相似文献   

18.
The dynamic stall problem for blades is related to the general performance of wind turbines, where a varying flow field is introduced with a rapid change of the effective angle of attack (AOA). The objective of this work is to study the aerodynamic performance of a sinusoidally oscillating NACA0012 airfoil. The coupled \(k{-}\omega \) Menter’s shear stress transport (SST) turbulence model and \(\gamma {-}Re_{\uptheta }\) transition model were used for turbulence closure. Lagrangian coherent structures (LCS) were utilized to analyze the dynamic behavior of the flow structures. The computational results were supported by the experiments. The results indicated that this numerical method can well describe the dynamic stall process. For the case with reduced frequency \(K = 0.1\), the lift and drag coefficients increase constantly with increasing angle prior to dynamic stall. When the AOA reaches the stall angle, the lift and drag coefficients decline suddenly due to the interplay between the first leading- and trailing-edge vortex. With further increase of the AOA, both the lift and drag coefficients experience a secondary rise and fall process because of formation and shedding of the secondary vortex. The results also reveal that the dynamic behavior of the flow structures can be effectively identified using the finite-time Lyapunov exponent (FTLE) field. The influence of the reduced frequency on the flow structures and energy extraction efficiency in the dynamic stall process is further discussed. When the reduced frequency increases, the dynamic stall is delayed and the total energy extraction efficiency is enhanced. With \(K = 0.05\), the amplitude of the dynamic coefficients fluctuates more significantly in the poststall process than in the case of \(K = 0.1\).  相似文献   

19.
During the flight of birds, it is often possible to notice that some of the primaries and covert feathers on the upper side of the wing pop-up under critical flight conditions, such as the landing approach or when stalking their prey (see Fig. 1) . It is often conjectured that the feathers pop up plays an aerodynamic role by limiting the spread of flow separation . A combined experimental and numerical study was conducted to shed some light on the physical mechanism determining the feathers self actuation and their effective role in controlling the flow field in nominally stalled conditions. In particular, we have considered a NACA0020 aerofoil, equipped with a flexible flap at low chord Reynolds numbers. A parametric study has been conducted on the effects of the length, natural frequency, and position of the flap. A configuration with a single flap hinged on the suction side at 70 % of the chord size c (from the leading edge), with a length of \(L=0.2c\) matching the shedding frequency of vortices at stall condition has been found to be optimum in delivering maximum aerodynamic efficiency and lift gains. Flow evolution both during a ramp-up motion (incidence angle from \(\alpha _0=0\) to \(\alpha _s=20^\circ\) with a reduced frequency of \(k= 0.12\, U_{\infty }/c\), \(U_{\infty }\) being the free stream velocity magnitude), and at a static stalled condition (\(\alpha =20^\circ\)) were analysed with and without the flap. A significant increase of the mean lift after a ramp-up manoeuvre is observed in presence of the flap. Stall dynamics (i.e., lift overshoot and oscillations) are altered and the simulations reveal a periodic re-generation cycle composed of a leading edge vortex that lift the flap during his passage, and an ejection generated by the relaxing of the flap in its equilibrium position. The flap movement in turns avoid the interaction between leading and trailing edge vortices when lift up and push the trailing edge vortex downstream when relaxing back. This cyclic behaviour is clearly shown by the periodic variation of the lift about the average value, and also from the periodic motion of the flap. A comparison with the experiments shows a similar but somewhat higher non-dimensional frequency of the flap oscillation. By assuming that the cycle frequency scales inversely with the boundary layer thickness, one can explain the higher frequencies observed in the experiments which were run at a Reynolds number about one order of magnitude higher than in the simulations. In addition, in experiments the periodic re-generation cycle decays after 3–4 periods ultimately leading to the full stall of the aerofoil. In contrast, the 2D simulations show that the cycle can become self-sustained without any decay when the flap parameters are accurately tuned.  相似文献   

20.
邓阳平  高正红  詹浩 《实验力学》2009,24(2):103-107
新概念旋转机翼飞机的主机翼既能高速旋转作为旋翼,又可锁定作为固定翼,所以只能使用特殊的前后对称翼型。针对主机翼翼型的这一特殊要求,对16%相对厚度,相对弯度分别为0%和3%的两种椭圆翼型的高速气动特性进行了风洞实验研究,试验分别在中国空气动力研究发展中心FL-21风洞和荷兰代尔夫特大学TST-27风洞进行,采用表面测压和尾排型阻测量技术。试验结果的对比分析表明,有弯度椭圆翼型的升力和力矩特性优于无弯度椭圆翼型,而阻力特性和最大升阻比劣于无弯度椭圆翼型。试验结果为旋转机翼飞机主机翼翼型的选取提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号