首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Villano  Elvis  Lenzo  Basilio  Sakhnevych  Aleksandr 《Meccanica》2021,56(11):2653-2668
Meccanica - The knowledge of key vehicle states is crucial to guarantee adequate safety levels for modern passenger cars, for which active safety control systems are lifesavers. In this regard,...  相似文献   

2.
The vertical response characteristics of several tire models were mathematically analysed by computer program. The results from the computation were compared with those from experiments. The tire models mentioned in this paper are evaluated. Finally, a modified point contact tire model has been proposed. The validity of it was then examined by experiment with tires 6.50–16 and 6.50R16.  相似文献   

3.
Sun  Xiaoqiang  Hu  Weiwei  Cai  Yingfeng  Wong  Pak Kin  Chen  Long 《Nonlinear dynamics》2020,101(2):857-874
Nonlinear Dynamics - Tire cornering characteristics have significant influence on vehicle lateral dynamics control. Unlike traditional tire mechanics models which are established based on the...  相似文献   

4.
5.
6.
7.
8.
The flight control problem of a flexible air-breathing hypersonic vehicle is presented in the presence of input constraint and aerodynamic uncertainty. A control-oriented model, where aerodynamic uncertainty and the strong couplings between the engine and flight dynamics are included, is derived to reduce the complexity of controller design. The flexible dynamics are viewed as perturbations of the model. They are not taken into consideration at the level of control design, the influence of which is evaluated through simulation. The control-oriented model is decomposed into velocity subsystem and altitude subsystem, which are controlled separately. Then robust adaptive controller is developed for the velocity subsystem, while the controller which combines dynamic surface control and radial basis function neural network is designed for the altitude subsystem. The unknown nonlinear function is approximated by the radial basis function neural network. Minimal-learning parameter technique is utilized to estimate the maximum norm of ideal weight vectors instead of their elements to reduce the computational burden. To handle input constraints, additional systems are constructed to analyze their impact, and the states of the additional systems are employed at the level of control design and stability analysis. Besides, “explosion of terms” problem in the traditional backstepping control is circumvented using a first-order filter at each step. By means of Lyapunov stability theory, it is proved theoretically that the designed control law can assure that tracking error converges to an arbitrarily small neighborhood around zero. Simulations are performed to demonstrate the effectiveness of the presented control scheme in coping with input constraint and aerodynamic uncertainty.  相似文献   

9.
10.
The technique of stochastic estimation is examined as a specific application of linear least squares modelling. Factors that are relevant to the objectives of estimation in fluids, such as the number of sensors, the use of multiple time lags, and the strength of linear correlations, are discussed in the context of a general regression formulation. We consolidate the established findings of several research fields in order to outline clearly the potential pitfalls and reasonable performance expectations of these empirical strategies. Experimental measurements of velocity and fluctuating pressure in the wake of a blunt trailing edge body are used for quantitative illustration of key considerations for model construction and performance evaluation. It is emphasized that estimator accuracy is influenced strongly by the physical relationships among the measured variables, in addition to their correlation with the estimated variable. The evaluation of several performance metrics on an independent test set provides valuable information for the selection of a suitably complex model. In particular, “variance inflation” is interpreted as an indicator of the potential amplification of noise by a stochastic estimator.  相似文献   

11.
In this paper, we concern about the Riemann problem for compressible no-slip drift-flux model which represents a system of quasi-linear partial differential equations derived by averaging the mass and momentum conservation laws with modified Chaplygin two-phase flows. We obtain the exact solution of Riemann problem by elaborately analyzing characteristic fields and discuss the elementary waves namely, shock wave, rarefaction wave and contact discontinuity wave. By employing the equality of pressure and velocity across the middle characteristic field, two nonlinear algebraic equations with two unknowns as gas density ahead and behind the middle wave are formed. The Newton–Raphson method of two variables is applied to find the unknowns with a series of initial data from the literature. Finally, the exact solution for the physical quantities such as gas density, liquid density, velocity, and pressure are illustrated graphically.  相似文献   

12.
Blowby and gas flow through the cylinder–piston–ring crevices are phenomena that affect the engine performance and exhaust emissions. Also these phenomena influence the cylinder pressure and temperature and the charge amount during a cycle. The study and validation of a sub-model for these phenomena in the absence of engine combustion deducts all effects arisen from the combustion event. During the current study, blowby sub-model and gas flow through crevices under motoring conditions has been noticed using a volume–orifice theory and the experimental results measured from a research engine. Blowby geometric parameters, consisting of a few critical cross-section areas (orifice areas) and volumes (top land and inter-ring crevice volumes), were measured in ambient temperature and corrected for hot running conditions. The cylinder pressure during cycle was measured by a piezoelectric pressure transducer and the low pressure parts of the cycle were measured using a piezoresistive pressure transducer for referencing purposes. The obtained results show a very good agreement between experimentally measured pressure data and model output for three compression ratios of 7.6, 10.2, 12.4 and three engine speeds of 750, 1500 and 2000 rpm, so that the maximum deviation was almost 5%. The model predicted that the maximum mass loss increased with increase of compression ratio and decreased with increase of engine speed. Also the peak mass loss position happened within the range of 3–9°CA after top dead center. After occurrence of the maximum loss, a reverse flow from the top land crevice into the cylinder was predicted in the model.  相似文献   

13.
14.
An experimental and numerical study has been performed for oil–water core-annular flow in a horizontal pipe, with a special focus on the effect of the presence of the turbulence in the water annulus. An experimental set-up was built and the obtained experimental results were used for the validation of numerical simulations that were carried out as well. The oil density was considerably lower than the water density, which leads to a rather eccentric oil core. The numerical simulations were carried out for different time dependent, fully 3D conditions. Only when a turbulence model is applied (instead of assuming laminar flow) the agreement between the predictions and the experiments is reasonably good.  相似文献   

15.
16.
In this study a 2D FEM model was developed to analyze ruts formation, rolling resistance, and power loss for a grape transporting cart aimed to replace the use of heavy tractors while harvesting grape. The model was supported by experiments in a vineyard in South Italy. Cone penetration tests were conducted to estimate frictional and cohesive properties in three soil conditions: firm, soft, and wet saturated. A tractor pulled test rig for a single wheel was developed to measure rolling resistance and sinkage, and complete the selection of the soil parameters. Completed the model, the analysis was conducted for a range of different wheel dimensions, and the outputs analyzed through response surfaces. The results showed the different impacts that width and diameter have on ruts formation and rolling resistance for different soil conditions. Wider wheels determined a main reduction of the sinkage, while the width contribution to the rolling resistance was affected by the total soil volume deformed. Larger diameters led to lower rolling resistance, with a higher impact on more deformable soils. Contact stress was compared with the thresholds recommended in the literature to determine the acceptable designs. This analysis represents a tool to select the running gear dimensions.  相似文献   

17.
18.
连续多跨梁结构模型在力学实验教学中的开发应用   总被引:4,自引:1,他引:3  
为了深化基础力学实验教学的改革,作者将力学课程中用变形能法求解超静定结构的理论与工程实际密切结合,开发设计了连续多跨梁的工程结构模型试验装置,为本科生开设出“工程结构电测应力分析”教学实验. 通过教学实践,验证了该教学实验的综合性和创新性.  相似文献   

19.
In the current work, we use the Constant Volume model and the numerical method, Regularized Smoothed Particle Hydrodynamics (RSPH) to study propagation and reflection of blast waves from detonations of the high explosives C-4 and TNT. The results from simulations of free-field TNT explosions are compared to previously published data, and good agreement is found. Measurements from height of burst tests performed by the Norwegian Defence Estates Agency are used to compare against numerical simulations. The results for shock time of arrival and the pressure levels are well represented by the numerical results. The results are also found to be in good agreement with results from a commercially available code. The effect of allowing different ratios of specific heat capacities in the explosive products are studied. We also evaluate the effect of changing the charge shape and height of burst on the triple point trajectory.   相似文献   

20.
This paper proposes a systematic method, inte-grating the uniform design(UD)of experiments and quantum-behaved particle swarm optimization(QPSO),to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear the-ory and a heuristic nonlinear creep model,the modeling and dynamic analysis of a 24 degree-of-freedom railway vehi-cle system were investigated.The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds.Generally,the critical hunting speeds of a vehicle sys-tem resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having origi-nal wheels without different wheel rolling radii.Because of worn wheels, the critical hunting speed of a running rail-way vehicle substantially declines over the long term. For safety reasons,it is necessary to design the suspension sys-tem parameters to increase the robustness of the system and decrease the sensitive of wheel noises.By applying UD and QPSO,the nominal-the-best signal-to-noise ratio of the sys-tem was increased from?48.17 to?34.05 dB.The rate of improvement was 29.31%.This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension sys-tem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号