首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Nonlinear forced vibrations of in-plane translating viscoelastic plates subjected to plane stresses are analytically and numerically investigated on the steady-state responses in external and internal resonances. A nonlinear partial-differential equation with the associated boundary conditions governing the transverse motion is derived from the generalized Hamilton principle and the Kelvin relation. The method of multiple scales is directly applied to establish the solvability conditions in the primary resonance and the 3:1 internal resonance. The steady-state responses are predicted in two patterns: single-mode and two-mode solutions. The Routh?CHurvitz criterion is used to determine the stabilities of the steady-state responses. The effects of the in-plane translating speed, the viscosity coefficient, and the excitation amplitude on the steady-state responses are examined. The differential quadrature scheme is developed to solve the nonlinear governing equations numerically. The numerical calculations confirm the approximate analytical results regarding the single-mode solutions of the steady-state responses.  相似文献   

2.
This paper presents a systematic methodology and formulation for determining the steady-state response of multibody systems. The equations of motion for a general multibody system are described in terms of a set of relative joint accelerations. Then, the differential equations of motion are converted to a set of algebraic equations for the steady-state response. These equations are derived based upon a set of conditions that must exist for the steady state. The application of this formulation in determining the steady-state response of a vehicle moving in a circular path is shown. The multibody model of the vehicle for two- or four-wheel steering is presented. The results of the steady-state simulation are compared with those obtained from a transient dynamic analysis.  相似文献   

3.
Some complex aircraft stress histories, steady-state spectra, are noted to induce fatigue-crack growth-rate behavior similar to that observed under constant-amplitude loading. The paper identifies the behavior induced by steady-state spectra, and attributes the behavior to spectrum-stress-event periodicity. Spectrum periodicity is subsequently defined by isolating the group of statistically repetitive stress events. The noted crack-growth-rate behavior that exists for steady-state spectra provides the analyst with new techniques for estimating crack lives. Several crack-life estimating techniques are compared; for the two steady-state spectra considered herein, one technique called the simple-crack incrementation-miniblock approach provides life estimates with the same accuracy as that given by the cycle-by-cycle life-prediction method studied but does so five times more efficiently. The reasons for associated accuracy and efficiency are discussed.  相似文献   

4.
Ekrann  S.  Aasen  J. O. 《Transport in Porous Media》2000,41(3):245-262
Steady-state upscaling is based on steady-state solutions to the two-phase flow equations. We study features of steady-state solutions, and the applicability of upscaled flow functions based thereon in transient situations. Also, efficient computation of steady-state solutions is addressed: The existence of a class of problems is proved, where two-phase streamlines (in the viscous limit) are identical to streamlines in the corresponding one-phase problem.  相似文献   

5.
Flow reactors are widely used in the chemical industry for purposes of catalytic reactions [1,2]. Calculation of reactors of this type, even in one-dimemional approximation, is complicated and possible only with the use of numerical methods [1, 3]. Such calculations make it possible to find the steady-state distribution of temperature and concentration in the chemical reactor if one exists; in general, however, there may be other steady-state regimes which may be preferable from the standpoint of obtaining a different degree of conversion of the starting product, operating stability, etc.In this connection special interest attaches to the question of the existence and number of steady-state solutions of the system of equations describing the reactor process.This problem was previously considered in [4–7]. Thus, in [4, 5] it was pointed out that in certain special cases more than one steady-state regime may exist. In [6, 7] the question of sufficient conditions of uniqueness was investigated. In [7] it was shown that the steady-state regime is unique in the ease of short reactors or a dilute mixture of reactants. In [8] the problem of the existence and uniqueness of the steady-state regime was examined for a chain reaction model with direct application of the general theorems of functional analysis.The present paper includes an analysis of a very simple mathematical model of an adiabatic chemical reactor in which an exothermic or endothermie reaction takes place. It is established that in the case of an endothermic process a unique steady-state regime always exists. In the exothermic case the problem of the steady-state regime also always has a solution which, however, may be nonunique; the possibility of the existence of several steady-state regimes, associated with the form of the temperature dependence of the heat release rate, is substantiated.The authors thank G. I. Barenblatt, A. I. Leonov, L. M. Pis'men, and Yu. I. Kharkats for discussing and commenting on the work.  相似文献   

6.
A Steady-State Upscaling Approach for Immiscible Two-Phase Flow   总被引:1,自引:2,他引:1  
The paper presents a model for computing rate-dependent effective capillary pressure and relative permeabilities for two-phase flow, in 2 and 3 space-dimensions. The model is based on solving the equations for immiscible two-phase flow at steady-state, accounting for viscous and capillary forces, at a given external pressure drop. The computational performance of the steady-state model and its accuracy is evaluated through comparison with a commercial simulator ECLIPSE. The properties of the rate-dependent effective relative permeabilities are studied by way of computations using the developed steady-state model. Examples presented show the dependence of the effective relative permeabilities and capillary pressures, which incorporate the effects of fine scale wettability heterogeneity, on the external pressure drop, and thereby on the dimensionless macro-scale capillary number. The effective relative permeabilities converge towards the viscous limit functions as the capillary number tends to infinity. Special cases, when the effective relative permeabilities are rate-invariant, are also studied. The applicability of the steady-state upscaling algorithm in dynamic displacement situations is validated by comparing fine-gridded simulations in heterogeneous reservoirs against their homogenized counterparts. It is concluded that the steady-state upscaling method is able to accurately predict the dynamic behavior of a heterogeneous reservoir, including small scale heterogeneities in both the absolute permeability and the wettability.  相似文献   

7.
The stability of vertical steady-state flows in geothermal water-above-steam systems is considered. The steam compressibility and the capillary forces on a phase interface are taken into account. A domain of the physical parameters of the geothermal system, where vertical steady-state flows exist, is found. The linear stability of these flows is analyzed, namely, the dispersion relation is obtained, the stability diagram is constructed, and the possible types of loss of stability are found using asymptotic and numerical methods. The effect of the steam compressibility and other physical parameters on vertical steady-state flows and their stability is analyzed.  相似文献   

8.
The weakly forced vibration of an axially moving viscoelastic beam is investigated.The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved.The nonlinear equations governing the transverse vibration are derived from the dynamical,constitutive,and geometrical relations.The method of multiple scales is used to determine the steady-state response.The modulation equation is derived from the solvability condition of eliminating secular terms.Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation.The stability of nontrivial steady-state response is examined via the Routh-Hurwitz criterion.  相似文献   

9.
The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities under lock-in conditions are obtained and the stability of steady-state responses is discussed. Results show that the internal fluid velocity has a prominent effect on the oscillation amplitude and that the steady-state responses incorporating unstable solutions in the lock-in region are also obtained. In addition, the effects of two kinds of fluctuating lift coefficients on the steady-state responses are compared with each other.  相似文献   

10.
范俊海 《力学季刊》2023,44(1):88-100
本文基于非局部弹性理论及辛叠加方法,得到放置在黏弹性介质上四角点支撑矩形纳米板稳态受迫振动问题的解析解.将纳米板受迫振动问题导入哈密顿体系,得到哈密顿控制方程,在无需任何预设函数的情况下可直接对哈密顿控制方程进行求解,得到简支纳米板稳态受迫振动问题在辛空间展开形式的解析解.进而通过边界叠加,可求出四角点支撑纳米板稳态受迫振动的解析解.数值算例中验证了本文应用辛叠加方法得到解析解的准确性,并以石墨烯纳米板为例,分析了非局部参数和黏弹性介质参数对四角点支撑石墨烯纳米板稳态受迫振动的影响.结果表明,非局部参数和黏弹性介质参数的变化会影响石墨烯纳米板的共振频率及共振幅值.  相似文献   

11.
The branching off of steady-state regimes from mechanical equilibrium is studied for the problem of filtration convection in a parallelepiped. The conditions for the geometric parameters under which stable continuous families of steady-state regimes develop are found. The stability of equilibria of the family with respect to three-dimensional perturbations is analyzed in a numerical experiment using a finite-difference method.  相似文献   

12.
The well-known steady-state problem of impingement of two plane jets of an ideal incompressible fluid moving with the same velocity is refined and extended to the case of unsteady interaction. Equations describing perturbation propagation on the free surface of the impinging jets are obtained and linearized on the steady-state solution.  相似文献   

13.
Non-linear vibration of viscoelastic pipes conveying fluid around curved equilibrium due to the supercritical flow is investigated with the emphasis on steady-state response in external and internal resonances. The governing equation, a non-linear integro-partial-differential equation, is truncated into a perturbed gyroscopic system via the Galerkin method. The method of multiple scales is applied to establish the solvability condition in the first primary resonance and the 2:1 internal resonance. The approximate analytical expressions are derived for the frequency–amplitude curves of the steady-state responses. The stabilities of the steady-state responses are determined. The generation and the vanishing of a double-jumping phenomenon on the frequency–amplitude curves are examined. The analytical results are supported by the numerical integration results.  相似文献   

14.
The jet in crossflow is a configuration of highest theoretical and practical importance, in which the turbulent mixing plays a major role. High-resolution measurements using Particle Image Velocimetry combined with Laser Induced Fluorescence have been conducted and used to validate simulations ranging from simple steady-state Reynolds-averaged Navier Stokes to sophisticated large-eddy simulation. The reasons for the erratic behavior of steady-state simulations in the given case, in which large-scale structures dominate the turbulent mixing, have been discussed. The analysis of intermittency proved to be an appropriate framework to account for the influence of these flow structures on the jet in crossflow, contributing to the explanation of the poor performance of the steady-state simulations.  相似文献   

15.
The time-dependent mathematical model describing the vortex motion of an incompressible polymeric liquid is discussed. In the steady-state case certain particular solutions are found. In the case of the steady-state pressure along the axis of cylinder, a version of deriving this model for both fixed and free boundaries is given.  相似文献   

16.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

17.
In this paper, parametric resonance of axially moving beams with time-dependent speed is analyzed, based on the Timoshenko model. The Hamilton principle is employed to obtain the governing equation, which is a nonlinear partial-differential equation due to the geometric nonlinearity caused by the finite stretch of the beam. The method of multiple scales is applied to predict the steady-state response. The expression of the amplitude of the steady-state response is derived from the solvability condition of eliminating secular terms. The stability of straight equilibrium and nontrivial steady-state response are analyzed by using the Lyapunov linearized stability theory. Some numerical examples are presented to demonstrate the effects of speed pulsation and the nonlinearity in the first two principal parametric resonances.  相似文献   

18.
The starting solutions for the oscillating motion of a generalized Burgers fluid due to longitudinal oscillations of an infinite circular cylinder, as well as those corresponding to an oscillating pressure gradient, are established as Fourier–Bessel series in terms of some suitable eigenfunctions. These solutions, presented as sum of steady-state and transient solutions, describe the motion of the fluid for some time after its initiation. After that time, when the transients disappear, the motion of the fluid is described by the steady-state solutions which are periodic in time and independent of the initial conditions. These solutions are also presented in simpler but equivalent forms in terms of modified Bessel functions of first and second kind. In both forms, the steady-state solutions can be specialized to give the similar solutions for Burgers, Oldroyd-B, Maxwell, second grade and Newtonian fluids performing the same motions. Finally, the required time to reach the steady-state for cosine and sine oscillations of the boundary is obtained by graphical illustrations.  相似文献   

19.
The exact solutions for the motion of a Maxwell fluid due to longitudinal and torsional oscillations of an infinite circular cylinder are determined by means of the Laplace transform. These solutions are presented as sum of the steady-state and transient solutions and describe the motion of the fluid for some time after its initiation. After that time, when the transients disappear, the motion is described by the steady-state solution which is periodic in time and independent of the initial conditions. Finally, by means of graphical illustrations, the required times to reach the steady-state are determined for sine, cosine and combined oscillations of the boundary.  相似文献   

20.
The stability of vertical flows through a horizontally extended two-dimensional region of a porous medium is considered in the case of presence of a phase transition front. It is shown that the plane steady-state phase transition front may have several steady-state positions in the wettable porous medium and the necessary condition of their existence is obtained. The spectral stability of the plane phase transition interface is investigated. It is found that in the presence of capillary forces exerted on the phase transition front in the wettable medium the plane front can be destabilized on the mode with both infinite and zero wavenumbers (short- and long-wave instabilities); the short-wave instability can then exist even in the case of the sole steady-state position of the front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号