首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(5):1281-1287
Extensive structure-activity relationships (SARs) study of JND3229 was conducted to yield a series of new reversible 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidine privileged scaffold as EGFRC797S inhibitors. One of the most potent compound 6i potently suppressed EGFRL858R/T790M/C797S kinase with an IC50 value of 3.1 nmol/L, and inhibited the proliferation of BaF3 cells harboring EGFRL858R/T790M/C797S and EGFR19D/T790M/C797S mutants with IC50 values of 290 nmol/L and 316 nmol/L, respectively. Further, 6i dose-dependently induced suppression of the phosphorylation of EGFRL858R/T790M/C797S and EGFR19D/T790M/C797S in BaF3 cells. Compound 6i may serve as a promising lead compound for further drug discovery overcoming the acquired resistance of non-small cell lung cancer (NSCLC) patients.  相似文献   

2.
Some promising 4-thiazolone derivatives as lipoxygenase inhibitors were designed, synthesized, characterized and evaluated for anti-inflammatory activity and respective ulcerogenic liabilities. Compounds (1b, 1e, 3b, and 3e) exhibited considerable in vivo anti-inflammatory activity (57.61, 79.35, 75.00, and 79.35%) against carrageenan-induced rat paw edema model, whereas compounds (1e, 3b, and 3e) were found active against the arachidonic acid-induced paw edema model (55.38, 55.38, and 58.46%). The most potent compound (3e) exhibited lesser ulcerogenic liability compared to the standard diclofenac and zileuton. Further, the promising compounds (1e and 3e) were evaluated for in vitro lipoxygenase (LOX; IC50?=?12.98 µM and IC50?=?12.67 µM) and cyclooxygenase (COX) inhibition assay (COX-1; IC50?>?50 µM and, COX-2; IC50?>?50 µM). The enzyme kinetics of compound 3e was evaluated against LOX enzyme and supported by in silico molecular docking and molecular dynamics simulations studies. Overall, the results substantiated that 5-benzylidene-2-phenyl-4-thiazolones are promising pharmacophore for anti-inflammatory activity.  相似文献   

3.
4.
Laportea bulbifera (Sieb. et. Zucc.) Wedd has long been utilized in Traditional Chinese Medicines (TCM) for the treatment of rheumatoid arthritis. However, the study of systematic anti-inflammatory chemical constituents in L. bulbifera has never been reported. Thus, bioassay-guided isolation for its roots part led to 46 compounds, including 38 phenolic derivatives. Their structures were determined on the basis of 1H and 13C NMR and MS spectra. All compounds were isolated from L. bulbifera for the first time except for 13 compounds. Most of the compounds showed good COX-2 inhibitory activity (IC50: 0.13–3.94 μM) and DPPH radical-scavenging activity (IC50: 1.57–9.55 μM). Four compounds (4, 17, 35, and 43) with different skeletons showed preferential COX-2 over COX-1 inhibition with selective indices ranging from 12 to 171. High content active compounds are important for elucidating the basis of the active substance of TCM. Compound 4 (COX-2, IC50 0.24 μM), a high content compound, represented one of the best selective COX-2 inhibitors. Another high content active compound (35) with a different skeleton might have different mechanism. Further study for the inhibition kinetics against COX-2 indicated compounds 4 and 35 were noncompetitive and competitive COX-2 inhibitors, respectively. Moreover, molecular docking and molecular dynamics simulation data further indicated that compound 4 could bind in the cavity of COX-2 and interacted with key residues VAL-538, PHE-142, and GLY-225 of COX-2 through hydrogen bonds. The results indicated that L. bulbifera roots could be applied as antioxidant and anti-inflammatory agents due to their potent selective COX-2 inhibitory and antioxidant activity of phenolic compounds.  相似文献   

5.
In the present study, twenty (20) structural variants of nitrofurazone were synthesized based on BIODS (Biology-oriented drug synthesis) approach. The structure elucidation of the synthetic molecules (120) was carried out using different spectroscopic techniques, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 120 exhibited good α-glucosidase inhibition than the parent, nitrofurazone. Four compounds 2, 4, 6, and 7 showed potential inhibition against α-glucosidase with IC50 values ranging between 0.63 ± 0.25–1.29 ± 0.46 µM as compared to the standard acarbose (IC50 = 2.05 ± 0.41 µM). Nevertheless, compounds 15 (IC50 = 0.74 ± 0.12 µM), and 19 (IC50 = 0.54 ± 0.3 µM) also displayed good α-glucosidase inhibition and compound 19 was the most active compound of the series. Kinetic study of the active compounds 7 and 19 was also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of enzyme were determined by molecular docking. Moreover, molecular dynamic simulation of compound 19 was also performed in order to determine the stability of the overall complex (α-glucosidase + c19) in an explicit watery environment. The synthetic molecules were predicted as non-cytotoxic, however, seven compounds 1, 3, 4, 9, 10, 11, and 12 were predicted as carcinogenic.  相似文献   

6.
In this study, a novel series of isoxazole-naphthalene derivatives as tubulin polymerization inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against human breast cancer cell line MCF-7. Most of the synthesized compounds exhibited moderate to potent antiproliferative activity (IC50 < 10.0 μM), as compared to cisplatin (15.24 ± 1.27 μM). Among them, compound 5j containing 4-ethoxy substitution at phenyl ring was found to be the most active compound with IC50 value of 1.23 ± 0.16 μM. Mechanistic studies revealed that compound 5j arrested cell cycle at G2/M phase and induces apoptosis. Furthermore, in vitro tubulin polymerization assay showed that compound 5j displayed better inhibition activity on tubulin polymerization (IC50 = 3.4 μM) than colchicine (IC50 = 7.5 μM). Molecular docking study also revealed that compound 5j binds to the colchicine binding site of tubulin.  相似文献   

7.
In continuation of our efforts toward the discovery of potent HIV-1 NNRTIs with diverse structures,a series of novel S-DACO analogues of 6-(2-cyclohexyl-1-allkyl)-2-(2-oxo-2-phenyl-ethylsulfanyl)pyrimidin-4(3 H)-ones were designed,synthesized and evaluated for their antiviral activities in MT-4 cells.Most of these new compounds showed moderate to good activities against wild type HIV-1 with IC_(50) values ranging from 7.55 μmol/L to 0.018 μmol/L.Among them,compound 5 c was identified as the most promising inhibitor against HIV-1 replication with an IC_(50)=0.018 μmol/L,CC_(50)=194 μmol/L,and SI=12791,which was much more potent than the reference drugs NVP and DLV and comparable to AZT and EFV.In addition,5 c also exhibited improved activity against double mutant HIV-1 strain RES056 compared to that of the reference drugs NVP/DLV and DB02.The preliminary structure-activity relationship(SAR) and molecular modeling studies were also discussed,which provides some useful indications for guiding the further rational design of new S-DACO analogues.  相似文献   

8.
Increase in the number of infections caused by pathogenic microbes in cancer patients has prompted the searcher to invest in the development of agents having dual anticancer and antimicrobial properties. The present study is concerned with synthesis and screening for anticancer and antimicrobial activity of a series of 5-hydrazinyl-2-(2-(1-(thien-2-yl)ethylidene)hydrazinyl)thiazole derivatives. The structure elucidation of the synthesized hydrazinyl thiazole derivatives was illustrated by spectroscopic and elemental analysis. All the newly synthesized compounds 5a-p were evaluated for in-vitro cytotoxic activity against breast carcinoma (MCF-7 cell line), hepatocellular carcinoma (HePG-2) and colorectal cancer (HCT-116) cell lines using MTT assay method. Compounds 5 g, 5h showed broad spectrum activity against three cancer cell lines with IC50 ranged from 3.81 to 11.34 µM in compared to the reference drug Roscovitine (IC50 = 9.32 to 13.82 µM), while compounds 5 l and 5 m were found to be more selective against HePG-2 and HCT-116 cell line (IC50 = 9.29 and 8.93 µM respectively) and compound 5j was more selective against HePG-2 and MCF-7 cell lines (IC50 = 6.73 and 10.87 µM respectively). The inhibitory activity of the most promising compounds was tested against the EGFR and ARO enzymes and were further tested for apoptosis and Annexin V/PI staining. The results of enzyme-based tests revealed that the tested compound 5j has a dual inhibitory effect on the EGFR and ARO enzymes with IC50 = 82.8 and 98.6 nM respectively in compared to the reference drugs Erlotinib and Letrozole (IC50 = 62.4 and 79 nM respectively). Furthermore, the majority of the tested hydrazinyl thiazole derivatives exhibited significant antimicrobial activity against the used pathogenic microbes species. Compounds 4b, 5h, 5j and 5 m exerted a good antibacterial and antifungal activity against all tested pathogenic microbes. Therefore, it was concluded that compounds 5 h, 5j and 5 m proved to possess dual anticancer and antimicrobial agent and may serves as a useful lead compounds in search for further modification or derivatization to give more potent and selective agents.  相似文献   

9.
Fourteen N-[{(substituted-phenylthiazol-2-yl)-3-aryl-1H-pyrazol-4-yl}methylene]-5-substituted-thiazol-2-amine (5a-n) analogs were synthesized by the reaction of 3-aryl-1-(thiazol-2-yl)-1H-pyrazole-4-carbaldehyde and substituted thiazole amines. The structures of prepared compounds were delineated by elemental analysis, FT-IR and 1H NMR spectra. These analogs were scrutinized for in vitro anti-infective and cytotoxic activities. Some thaizole clubbed pyrazole derivatives were assessed for their cytological changes in germ cells of Capra hircus by using histomorphological analysis, fluorescence assay and apoptosis quantification. Compound 5l having 4-NO2 substituent induced the significant apoptosis in tested cells of Capra hircus. The results revealed that compounds 5c, 5e, 5k, and 5l have commendable antibacterial activity within MIC range of 62.5–250 μg/ml. Compound 5c emerged as a potent antimalarial compound by exhibiting IC50 value of 0.23 μg/ml and compound 5j induced paralysis of Pherentima posthuma at 8.6 ± 1.94 min and death at 20 ± 5.04 min, respectively. Compound 5j revealed an excellent cytotoxicity at IC50 value of 30.7 and < 10 μg/ml against MCF-7 and HeLa cells, respectively. Individually, compounds 5c, 5j and 5l could be considered as promising anti-infective and cytotoxic compounds.  相似文献   

10.
Alzheimer’s disease (AD) is a neurodegenerative disorder and cholinesterase (ChE) enzymes are considered as crucial targets for the treatment of AD. Herein, a series of heteroaryl substituted imidazole derivatives (5a-5x) was prepared using amino acid catalyzed, one-pot facile synthetic approach. In this context, the catalytic potentials of different amino acids were investigated and 15 mol% of glutamic acid was identified as the most suitable catalyst to obtain the target products in good yields up to 90 %. These structurally exciting heterocyclic hybrids were screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. This series displayed moderate to excellent inhibitory potential against AChE with IC50 values > 25 µM and the most active compound was 3-(4-(1-(3,5-dimethylphenyl)-4,5-diphenyl-1H-imidazol-2-yl)-1-phenyl-1H-pyrazol-3-yl)–2H-chromen-2-one (5x) with IC50 value of 25.83 ± 0.25 µM.This inhibitory potential was attributed to hydrophobicity as the major contributory factor. The most potent compound against BChE was 1,3-diphenyl-4-(1,4,5-triphenyl-1H-imidazol-2-yl)-1H-pyrazole (5a) with IC50 value of 0.35 ± 0.02 µM followed by other potent compounds 5p, 5 m, 5x, 5b, 5c, 5e and 5f with IC50 values < 10 µM. SAR studies further revealed that coumarinyl moiety at R1 position in the imidazolylpyrazole skeleton significantly improved the overall cholinesterase inhibitory potential. However, a simple phenyl ring attached at this R1 site was highly effective and selective for BChE inhibition (5a) over AChE. Docking data also demonstrated the interaction of 5x and AChE with a docking score of 7564 and atomic contact energy (ACE) value of –291.90 kcal/mol whereas docking score for 5a against BChE was 7096 with ACE value of –332.95 kcal/mol. The results altogether suggest further investigations of the heteroaryl substituted imidazole core skeleton in search of potential leads towards designing of new anti-cholinesterase drugs for the treatment of AD.  相似文献   

11.
A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM).  相似文献   

12.
Three pairs of novel 2-aryl-3,4,5-trihydroxypiperidines (6-8 and their enantiomers), the piperidine analogues of the pyrrolidine alkaloids radicamine A and radicamine B, were prepared from six- membered cyclic nitrones through a concise two-step procedure, i.e., Grignard reagent addition and deprotection. These novel polyhydroxylated piperidine iminosugars were assayed against 10 types of enzymes. Only compound 8 exhibited weak inhibition (IC50 1080 μmol/L) against β-galactosidase from rat intestinal lactases.  相似文献   

13.
A series of novel 2,4-diaminopyrimidine-modified compounds was designed and synthesized. Compound 14 showed micromolar dual inhibitory effect on both FP-2 and PfDHFR, and potential inhibition to the proliferation of P. falciparum 3D7 strain and chloroquine-resistant P. falciparum Dd2 strain.  相似文献   

14.
A novel series of 5H-pyridazino[4,5-b]indoles were designed and synthesized in order to find novel potent anticancer compounds.The structures were confirmed by ~1H NMR and MS.Their antiproliferative activities against two cancer cell lines were tested by the MTT method in vitro.Three of compounds (1e,1g,and 1h) exhibited potent antiproliferative activities,especially compound 1h (with IC_(50) values of 5.2μmol/L and 1.9μmol/L against Bel-7402 and HT-1080,respectively).The preliminary structure-activity relationships of 5H-pyridazino[4,5-b]indole derivatives were discussed.  相似文献   

15.
A series of novel 2H-pyrazolo[4,3-c]hexahydropyridine derivatives (II) have been designed and synthesized. The target compounds have been identified by elemental analysis and spectral (1H NMR, IR, and MS) data and the absolute configuration of compound (II 1 ) was confirmed by single crystal X-ray diffraction. The cytotoxicity of the target compounds have been evaluated in vitro against two human breast cancer cell lines MCF-7 and MDA-MB-231 by MTT assay. Most compounds exhibited good inhibition, and compounds II 21 (IC50 = 4.7 μM for MCF-7 and IC50 = 9.3 μM for MDA-MB-231), II 33 (IC50 = 2.4 μM for MCF-7 and IC50 = 4.2 μM for MDA-MB-231) and II 40 (IC50 = 3.3 μM for MCF-7 and IC50 =8.6 μM for MDA-MB-231) displayed better inhibitory activity than 5-fluorouracil (IC50 = 4.8 μM for MCF-7 and IC50 = 9.6 μM for MDA-MB-231, respectively). Flow cytometric analysis and DNA fragmentation suggest that II 33 is cytotoxic and able to induce the apoptosis of MCF-7 cells. The fluorescence properties of compounds II 1 , II 6 , II 11 , II 16 , II 23 , II 28 , and II 35 were also studied and compound II 28 afforded the highest photoluminescence quantum yield (38%).  相似文献   

16.
DNA gyrase is a promising target for antibacterial agents. Several classes of small-molecule inhibitors have been discovered in recent decades, but none of these have reached the market. We have designed a small library of 1,2,4-oxadiazole/pyrrolidine hybrids with mid nanomolar inhibitory and potent antibacterial activities against DNA gyrase and topoisomerase IV. Compounds 9, 15, 16, 19, and 21 inhibited Escherichia coli DNA gyrase to a similar extent as the reference compound, novobiocin, with inhibitory values ranging from 120 nM to 270 nM. Compound 16 was one of the most potent compounds in the series, with an IC50 value of 120 nM against E. coli gyrase, which is lower than the IC50 value of novobiocin (170 nM). Compound 16 had the highest inhibitory activity, with minimum inhibitory concentrations (MIC) of 24 and 62 ng/mL against Staphylococcus aureus and E. coli, respectively, which compared favorably with ciprofloxacin (30 and 60 ng/mL, respectively). Compounds 9, 15, 19, and 21 were similar to novobiocin in terms of their activity against E. coli and S. aureus topoisomerase IV, while compound 16 was more potent than novobiocin.  相似文献   

17.
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.  相似文献   

18.
SHP2 is a new promising target for anti-cancer drug discovery. A series of novel phenylhydrazonopyrazolone derivatives was synthesized by a more convenient method, and their chemical structures were characterized by various spectroscopic methods. The inhibitory effects of these compounds on SHP2 enzyme and SHP2-dependent cancer cell H1975 were evaluated. The compound 11f with IC50 value of 3.38 μmol/L exhibited more potent antitumor activity against H1975 cell than GS-493 (IC50?=?20.92 μmol/L). Molecular dynamics simulation of compound 11f displayed a possible mode of interaction between this compound and SHP2 enzyme.  相似文献   

19.
BackgroundPyrazolopyrimidine heterocycle and its isosteres represent the main scaffold for many pharmacologically active drugs including anti-inflammatory agents. The COX-2 inhibitors are the principal gate for the design of new safe and potent anti-inflammatory agents.MethodsNovel derivatives of pyrazolo[1,5-a] pyrimidines were synthesized and screened in vivo and in vitro for their anti-inflammatory potential.ResultsWithin the constructed compounds, compound 11 was the most active compound on IL-6 and TNF-α (percentage inhibition = 80 and 89%, respectively). In addition, compound 12 displayed the most inhibitory effect towards COX-2 (IC50 = 1.11 µM), whereas compound 11 recorded the highest COX-2 selectivity (S.I = 8.97). The target derivatives 1114 displayed good edema inhibitory potential (46–68%) and compound 11 was the most potent candidate (ED50 = 35 mg/kg). Additionally, the most potent sPLA2-V inhibitors were compounds 11 and 13 (IC50 = 1 and 1.7 µM respectively). Regarding activity towards 15-LOX, derivative 12 was the most active compound with IC50 = 5.6 µM revealing higher inhibitory activity than nor-dihydroguaiaretic acid (IC50 = 8.5 µM). To confirm the anti-inflammatory potential of the target derivatives, molecular modeling was performed inside COX-2 and 15-LOX active sites.ConclusionDisplay discoveries increment the plausibility that these pyrazolo[1,5-a]pyrimidines might act as a beginning point for the improvement of anti-inflammatory agents.  相似文献   

20.
《中国化学快报》2023,34(6):107923
The abnormal activation of BRD4 accelerates the progression of acute myeloid leukemia (AML), developing more precise therapeutics to intervene BRD4 promise to be an excellent opportunity to avoid current limitations of chemotherapy in clinic. Herein, a range of small-molecule PROTACs with the privileged 8-methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one scaffold were rationally designed, which harbored different carbon or ethylenedioxy chains to degrade BRD4 mediated by the E3 ubiquitin ligase CRBN. Among them, the most potential B24 exhibited remarkable BRD4 degradation and excellent anti-proliferative activities in MV4-11 cells, with values of DC50 and IC50 for 0.75 nmol/L and 0.4 nmol/L, respectively, which were better than the BRD4 inhibitor (+)-JQ-1. Notably, this compound could time-dependently degrade the target protein in the BRD4-, CRBN-, and proteasome-dependent manner. Besides, B24 dramatically decreased the level of proto-oncogene c-Myc, and induced cell apoptosis by arresting the cell cycle in G0/G1 phase, down-regulating Bcl-2 and up-regulating Bax to amplify apoptotic effectors. This proof-of-concept study also highlighted the feasibility of BRD4-based PROTACs as a more powerful strategy against AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号