首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The synthesis of binuclear complexes obtained by the reaction of aromatic diamines with the ternary complexes of copper(II) with bis(2-pyridyl)amine (dpa) as primary ligand and salicylaldehyde or 2-hydroxynaphthaldehyde as secondary ligand have been reported. The complexes have been characterized by elemental analyses, conductance, electronic and i.r. spectral studies. Magnetic measurements indicate antiferromagnetic exchange between two copper(II) centres. E.s.r. spectra exhibit a Ms=2 transition, supporting the antiferromagnetic coupling.  相似文献   

2.
Two new Schiff base ligands 1 and 2 (where 1 = 4-(2-hydroxybenzilidenamino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate, 2 = 4-(4-(decyloxy)-2-hydroxybenziliden amino)-phenyl-4-(decyloxy)-2-(pent-4-enyloxy)benzoate) and their copper (Cu)(II) complexes have been synthesised and characterised. The derivatives were fully characterised structurally, and their mesomorphic behaviour was investigated by polarised optical microscopyand differential scanning calorimetry. The structure of Cu(II) complex having 1 as ligand (3) was determined by X-ray diffraction. The Schiff base ligands exhibit enantiotropic nematic phases, the Cu(II) complex 4 shows monotropic nematic phase behaviour, while compound 3 does not show mesomorphism.  相似文献   

3.
Two new mononuclear complexes of copper(II), namely [CuL2] (1) and [CuL′2] (2) have been synthesized by reacting copper perchlorate with furfurylamine and salicylaldehyde or 2-hydroxyacetophenone, where L = (2-hydroxybenzyl-2-furylmethyl)imine and L′ = (2-hydroxymethylbenzyl-2-furylmethyl)imine, the respective asymmetric bidentate Schiff bases that are formed in situ to bind the Cu(II) ion. The complexes have been characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of both the complexes (1) and (2) adopt square planar geometry supported by weak intermolecular C–H···π interactions.  相似文献   

4.
Four new copper(II) complexes of the composition [Cu(H2L)(H2O)] have been synthesized by template method from reaction of copper(II) acetate, succinoyldihydrazine and some o-hydroxy aromatic aldehydes and ketones in aqueous methanol media. The composition of the complexes has been established on the basis of data obtained from analytical and mass spectral studies. The structure of the complexes has been discussed in the light of molar conductance, magnetic moment, Uv-vis, EPR and IR spectral studies. All of the complexes are non-electrolyte in DMSO. The μeff values for the complexes fall in the region 1.76–1.85 BM which rules out the possibility of any M–M interaction in the structural unit of the complexes. The ligands coordinate to the metal centre in enol form through phenolate/naphtholate oxygen atoms and azomethine nitrogen atoms. The NMR spectra show that ligands are present in anti-cis configuration in uncoordinated state. In all of the complexes the copper centre adopts square pyramidal stereochemistry. The unpaired electron is present in dx2-y2 orbital in the ground state for copper centre in the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry.  相似文献   

5.
Three Schiff base copper(II) complexes have been prepared and characterized by elemental analysis, mass spectra, i.r., electronic spectra, eff and X-ray crystal structures. Cyclic voltammetry studies on the complexes indicate a dependence of the cathodic potentials upon electronic effects, but independence on the solid state structure.  相似文献   

6.
Two Schiff base copper(II) complexes, bis(N-furfurylsalicylaldiminato)copper(II) (I) and bis(N-tetrahydrofurfurylsalicylaldiminato)copper(II) (II), were synthesized and their solid state structures were determined by X-ray crystallography. Complex I has a square planar geometry. In contrast, complex II displays a distorted square planar geometry. Thus, the geometry around copper in the solid state structures of I and II is determined by a combination of steric and electronic effects, as well as by crystal packing forces.  相似文献   

7.
A series of binuclear palladium(II) salicylaldiminato dithiosemicarbazone complexes have been synthesized and characterized. The palladium complexes were obtained by the reaction of various ethylene- and phenylene-bridged dithiosemicarbazones with Pd(PPh3)2Cl2. The free salicylaldimine ligands and their palladium complexes were characterized by NMR and IR spectroscopies, ESI-mass spectrometry, elemental analyses and for two representative complexes also by X-ray diffraction. In both metal complexes, the solid-state structures show the two palladium centers to be coordinated in a slightly distorted square-planar geometry, which gives rise in each case to five- and six-membered chelate rings. The salicylaldimine thiosemicarbazone ligands coordinate to palladium in a tridentate manner, through the phenolic oxygen, imine nitrogen and thiolate sulfur atoms.  相似文献   

8.
The reactions of copper(II) chloride dihydrate and three bulky Schiff base ligands derived from rimantadine and salicylaldehyde (or methoxy-substituted salicylaldehydes), generated C38H48CuN2O2 (1), C40H52CuN2O4 (2), and C40H52CuN2O4 (3), respectively. These complexes were characterized by infrared spectra, UV–vis, elemental analysis and molar conductance. X-ray single-crystal diffraction analysis reveals that 1 has two different spatial configurations, 1a and 1b. For 1a, each asymmetric unit consists of one mononuclear copper(II) molecule. For 1b, each asymmetric unit consists of two copper(II) mononuclear molecules. All the complexes crystallize in the monoclinic system, P21/c space group for 1a and 2; P21/n space group for 1b; C2/c space group for 3. Each complex for 13 consists of one copper(II) and two corresponding deprotonated ligands. The central copper(II) in all complexes is four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligands. The geometry around copper in 1a, 1b, and 2 is distorted square planar, but square planar in 3.  相似文献   

9.
Some new lead(II) complexes of the general formula Pb(L)2, where HL = Schiff bases derived from the condensation of isatin and chloroisatin with phenylalanine (HL1/HL4), isoleucine (HL2/HL5), and glycine (HL3/HL6), have been synthesized and characterized by elemental analysis, molar conductance, electronic, infrared, and multinuclear magnetic resonance (1H and 13C) studies. In all cases, the Pb atom is in a four-coordinated environment with two bidentate deprotonated Schiff bases binding as monoanionic ligands through the oxygen and azomethine nitrogen. The 3D molecular modeling and analysis for bond lengths and bond angles have also been carried out for one of the representative compounds, [Pb(L3)2] to substantiate the proposed structures.  相似文献   

10.
Two new Schiff bases (2,4-diiodo-6-[(2-morpholin-4-yl-ethylimino)-methyl]-phenol and 2,4-diiodo-6-[(3-morpholin-4-yl-propylimino)-methyl]-phenol), condensed from 3,5-diiodosalicylaldehyde with 2-morpholinoethylamine and 3-morpholinopropylamine, have been designed and synthesized. Reaction of the Schiff bases with Zn(OAc)2 · 2H2O, Cu(OAc)2 · H2O, Ni(OAc)2 · 4H2O, Co(OAc)2 · 4H2O, Cd(OAc)2 · 2H2O, Mn(OAc)2 · 4H2O, Fe(SO4)2 · 7H2O, and Hg(OAc)2 led to the formation of 16 new mononuclear complexes. The complexes were characterized by UV, Infrared, ESI-MS, and elemental analyses, and 3,5-diiodosalicylalidene-2-morpholinoethylaminozinc(II) (1) and 3,5-diiodosalicylalidene-2-morpholinoethylaminocopper(II) (2) were characterized by single crystal X-ray diffraction. Based on crystal structural analysis of 1 and 2, coupled with their spectral similarity with 316, it can be concluded that 316 have structures similar to 1 and 2. All the complexes were assayed for antibacterial activities against three Gram positive bacterial strains (Bacillus subtilis, Staphylococcus aureus, and Streptococcus faecalis) and three Gram negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide method. Among the complexes tested, 8 and 16 showed the most favorable antibacterial activity with minimum inhibitory concentration of 0.781, 12.5, 6.25, 3.125, 3.125, 6.25 and 1.562, 6.25, 1.562, 3.125, 3.125, 1.562 µg mL?1 against B. subtilis, S. aureus, S. faecalis, P. aeruginosa, E. coli, and E. cloacae, respectively.  相似文献   

11.
Abstract

Complexes 1-3, C34H36X4CuN2O2 (X?=?Cl, Br, I), were synthesized with copper chloride dihydrate and three new Schiff base ligands derived from amantadine and 3,5-dihalosalicylaldehydes. They were characterized by IR, UV–VIS, elemental analysis, molar conductance, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis reveals that 1 and 2 crystallize in the triclinic system, Pī space group. Each asymmetric unit consists of one copper(II) ion, two corresponding deprotonated Schiff base ligands and one lattice dichloromethane molecule. 3 crystallizes in the monoclinic system, P21/n space group. Each asymmetric unit consists of one copper(II) ion and two deprotonated iodo- Schiff base ligands. The tetra-coordination of the central copper(II) ion in 1-3 is constructed by two nitrogen atoms and two oxygen atoms from the corresponding Schiff base ligands, forming a distorted tetrahedral geometry. Electrochemical properties of the complexes were determined by cyclic voltammetry.

  相似文献   

12.
Two new series of copper(II), nickel(II), cobalt(II), zinc(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) complexes with two bifunctional tridentate Schiff base, H4L1 and H2L2 ligands have been prepared. The Schiff base, H4L1 and H2L2, ligands were synthesized by the condensation of 4,6-diacetylresorcinol with o-aminophenol or o-phenylenediamine. The ligands are either di- or tetra-basic with two symmetrical sets of either OON or NNO tridentate chelating sites. The ligands and their metal complexes have been characterized by elemental analysis, 1H-n.m.r., FT-IR, mass, electronic, esr spectra and thermal gravimetric analysis and magnetic susceptibility. With the exception of CoII ion with H2L2 which afforded a trinuclear complex, a variety of binuclear complexes for the rest of the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The bonding sites are the azomethine and amino nitrogen atoms, and phenolic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.  相似文献   

13.
Mixed-ligand complexes of copper(II) with 1,10-phenanthroline and various Schiff bases have been prepared and characterized by elemental analysis, electronic and i.r. spectra, magnetic moment and molar conductance data. The Schiff base behave as bidentate ligands, and the mixed-ligand copper(II) complexes of the ligands HL1, HL2 and HL4 are binuclear. The conductivity data for all the complexes are consistent with those expected for an electrolyte. Antimicrobial activities of some of the ligands and complexes have been tested against Bacillus megaterium and Candida tropicalis. 1H and 13C n.m.r. spectra have been recorded in order to solve the solution structure of the ligands. Thermal properties of all complexes have been studied by the d.t.a. and t.g.a. techniques.  相似文献   

14.
Two cubane-type tetranuclear nickel(II) and copper(II) complexes, [Ni4(L1)4(CH3OH)4] (1) and [Cu4(L2)4]·H2O (2), where L1 and L2 are the dianionic forms of the tridentate Schiff bases 4-nitro-2-[(2-hydroxyethylimino)methyl]phenol (H2L1) and 5-methoxy-2-[(2-hydroxyethylimino)methyl]phenol (H2L2), respectively, have been synthesized and characterized by physicochemical methods and single-crystal X-ray diffraction. The magnetic properties of the complexes show the presence of ferromagnetic interactions for complex 1 and antiferromagnetic interactions for complex 2, mediated by hydroxyl bridges.  相似文献   

15.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

16.
Three copper(II) complexes derived from bulky ortho-hydroxy Schiff base ligands, (1)-(3), were synthesized and characterized by chemical analysis, UV-Vis, IR, μeff and mass spectrometry. The solid state structures of compounds (1)-(3) were determined. The solid state X-ray diffraction studies of these compounds show that the geometry is intermediate between square planar and tetrahedral. Moreover, EPR studies in DMF solution at 77 K suggest that the geometry of these complexes in solution is different from that observed in the solid state by X-ray crystallography. Furthermore, cyclic voltammetry studies performed for (1)-(3), indicate a dependence of the cathodic potentials upon conformational and electronic effects.  相似文献   

17.
To investigate the structure–activity relationship of L-glutamine and L-asparagine Schiff base copper complexes in applications, L-glutamine and L-asparagine Schiff bases (GV and AV) and their copper complexes [Cu3(GV)2(CH3COO)2(H2O)] · 2H2O (GVC) and [CuAV(H2O)3] (AVC) have been synthesized and characterized by molar conductance, elemental analysis, UV-Vis, IR, 1H-NMR, and TG-DTG. We examined the geometries of GV, AV, GVC, and AVC through Hartree–Fock method and electronic absorption spectra. We also tested their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis bacteria and antiproliferation activity on human breast cancer MDA-MB-231 cells. The side chain difference between L-glutamine and L-asparagine results in different geometry of GV and AV, which leads to different geometry of GVC and AVC. GVC, a trinuclear Cu(II) complex, shows the highest antibacterial activity and the highest growth inhibition activity on MDA-MB-231 cells. Our results suggest that GVC has potential as an antibacterial and anticancer agent.  相似文献   

18.
Two new Schiff bases (SMPDH and SBPDH) of S-methyl- and S-benzyl-dithiocarbazate with 2-pyridinecarboxaldehyde N-oxide were prepared and confirmed by elemental analyses and IR spectra. Four copper(II) complexes of the above two Schiff base ligands with imidazole and pyridine were obtained and characterized spectroscopically. The crystal structure of [Cu(SMPD)ImH]ClO4 was determined by X-ray diffraction analysis. The geometry of the copper atoms in these complexes is square planar with an unsymmetrical environment.  相似文献   

19.
Copper(II) and zinc(II) complexes of Schiff bases obtained by condensation of amoxicillin and cephalexin with salicylaldehyde/pyridoxal were prepared and characterized by microanalytical, thermogravimetric, magnetic and spectroscopic data. All the complexes were found to be six‐coordinate and containing two water molecules. The electron paramagnetic resonance spectral lines exhibited rhombic distortion from axial symmetry, with g|| > g? > ge, in the copper(II) complexes. The geometry of the zinc(II) complexes appears to be octahedral. All the compounds under investigation showed antibacterial activity. The antibacterial activity showed the following trend: copper(II) complexes > zinc(II) complexes > Schiff base ligands > parent drugs. The copper(II) complexes with the Schiff bases derived from cephalexin showed substantially enhanced activity against Pseudomonas aeruginosa compared with the parent drug. All the copper complexes were also found to be active against kaolin paw oedema, whereas the parent drugs were inactive. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号