首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A piperidinium-based ionic liquid, N-methylpiperidinium-N-acetate bis(trifluoromethylsulfonyl)imide ([MMEPip][TFSI]), was synthesized and used as an additive to the electrolyte of LiFePO4 battery. The electrochemical performance of the electrolytes based on different contents of [MMEPip][TFSI] has been investigated. It was found that the [MMEPip][TFSI] significantly improved the high-rate performance and cyclability of the LiFePO4 cells. In the optimized electrolyte with 3 wt% [MMEPip][TFSI], 70 % capacity can be retained with an increase in rate to 3.5 C, which was 8 % higher than that of electrolyte without [MMEPip][TFSI]. For the Li/LiFePO4 half-cells, after 100 cycles at 0.1 C, the discharge capacity retention was 78 % in the electrolyte without ionic liquid. However, in the electrolyte with 3 wt% [MMEPip][TFSI], it displayed a high capacity retention of 91 %. The good electrochemical performances indicated that the [MMEPip][TFSI] additive would positively enhance the electrochemical performance of LiFePO4 battery.  相似文献   

2.
The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet (UV) cross-linking technology with polyurethane acrylate (PUA), methyl methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), ethylene glycol dimethacrylate (EGDMA), and benzoyl peroxide (BPO). N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquid is synthesized by mixing N-methyl-N-propyl pyrrolidinium bromide (Py13Br) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The addition of Py13TFSI to polymer electrolyte membranes leads to network structures by the chain cross-linking. The resultant electrolyte membranes display the room temperature ionic conductivity of 1.37 × 10?3 S cm?1 and the lithium ions transference number of 0.22. The electrochemical stability window of IL-PE is about 4.8 V (vs. Li+/Li), indicating sufficient electrochemical stability. The interfacial resistances between the IL-PE and the electrodes have the less change after 10 cycles than before 10 cycles. IL-PE has better compatibility with the LiFePO4 electrode and the Li electrode after 10 cycles. The first discharge performance of Li/IL-PE/LiFePO4 half-cell shows a capacity of 151.9 mAh g?1 and coulombic efficiency of 87.9%. The discharge capacity is 131.9 mAh g?1 with 95.5% coulombic efficiency after 80 cycles. Therefore, the battery using the IL-PE exhibits a good cycle and rate performance.  相似文献   

3.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

4.
采用溶液浇铸法将N-甲基-N-丙基哌啶二(三氟甲基磺)亚胺(PP13TFSI)、二(三氟甲基磺)亚胺锂与偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))混合制备离子液体凝胶聚合物电解质(ILGPEs). 通过扫描电子显微镜观察发现,这种离子液体凝胶聚合物电解质由于液体相的均匀分布而具有疏松的结构. 采用电化学阻抗、计时电流法、线性扫描伏安法测试了电解质的离子电导率、锂离子迁移数和电化学窗口. 室温下离子液体凝胶聚合物电解质的离子电导率和锂离子迁移数分别是0.79 mS/cm和0.71,电化学窗口为0~5.1 Vvs. Li+/Li. 电池性能测试表明,这种离子液体凝胶聚合物电解质在Li/LiFePO4电池中是稳定的,放电容量在30、75和150mA/g倍率下分别为135、117和100 mAh/g,电池经100个循环后容量保持在100%而几乎没有衰减.  相似文献   

5.
The Raman and Infrared (IR) spectra of poly(methyl methacrylate) (PMMA) membranes plasticized by ionic liquids of the (1 − x)[1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)],xLiTFSI type, where BMI+ is the 1‐butyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, are analyzed for a lithium bis(trifluoromethane sulfone)imide (LiTFSI) mole fraction x = 0.23 and PMMA contents from 0 to 50 wt%. The lithium is found to have an average coordination of about three CO groups and less than one TFSI anion. It plays the role of a cross‐linker between the ester groups of PMMA and the nonvolatile ionic liquid. Addition of PMMA to the (1 − x)(BMITFSI),xLiTFSI ionic liquid lowers the conductivity but might improve the lithium transference number by transforming the [Li(TFSI)2] anionic clusters present in the pure ionic liquid into a mixed coordination by ester groups and TFSI anions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Ionic liquids are promising additives for Li-ion batteries owing to its desirable physicochemical properties. Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ([N2224][Tf2N]) ionic liquid was synthesized and their physical and electrochemical properties were investigated. Among several quaternary ammonium ionic liquids, [N2224][Tf2N] exhibited higher conductivity (1.31 mS?cm?1), better thermal and electrochemical stabilities, and wide electrochemical window, i.e., more than 5.9 V. Standard solution was prepared by dissolving lithium bis(trifluoromethanesulphonyl)imide (LiTf2N) in ethylene carbonates/dimethyl carbonate (1:1, by weight). The conductivity for the electrolyte containing [N2224][Tf2N] and the mixed electrolyte without additives at 25 °C are 10.24 and 8.79 mS?cm?1, respectively. LiFePO4 half-cell containing 0.6 mol?L?1 LiTf2N-based organic electrolyte with [N2224][Tf2N] showed relatively high initial discharge capacity and coulombic efficiency at first cycle. It is found that the mix [N2224][Tf2N] electrolyte exhibits relatively high-rate capacity. The capacity retention of half-cell containing [N2224][Tf2N] is 2 % more than without additive at 0.2 C. However, the rate capacity retention of the half-cell with mix [N2224][Tf2N] electrolyte is above 10 % more than without additive at 0.5 C. The results showed that [N2224][Tf2N] was an effective electrolyte additive in LiFePO4 half-cell.  相似文献   

7.
Gel polymer electrolytes (GPE) based on electrospun polymer membranes, poly(vinylidene fluoride-co-hexafluoropropylene), grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA), and poly(vinylidene difluoride-co-hexafluoropropylene) (PVDF-HFP) are prepared for lithium ion batteries by incorporating with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI). The uniform porosity and the compatibility of blend electrospun membranes avoiding the pore blocking are beneficial to enhance the electrolyte uptakes. The GPE based on the fibrous PVDF-HFP-g-PPEGMA/PVDF-HFP activated with 1 M LiTFSI (BMITFSI) show a maximum ionic conductivity of 2.3 × 10?3 S cm?1 at room temperature and electrochemical stability of up to 5.2 V. The Li/GPE/LiFePO4 cells with GPE based on PVDF-HFP-g-PPEGMA/PVDF-HFP blend electrospun membrane deliver specific capacities of 163, 141, and 125 mAh g?1 at 0.1, 0.5, and 1C rates, respectively, and remains well after 50 cycles for each rate. Therefore, the novel GPE have been demonstrated to be suitable for lithium-ion battery applications.  相似文献   

8.
The Raman spectra of (1 − x)(BMITFSI), xLiTFSI ionic liquids, where 1‐butyl‐3‐methylimidazolium cation (BMI+) and bis(trifluoromethane‐sulfonyl)imide anion (TFSI) are analyzed for LiTFSI mole fractions x < 0.4. As expected from previous studies on similar TFSI‐based systems, most lithium ions are shown to be coordinated within [Li(TFSI)2] anionic clusters. The variation of the self‐diffusion coefficients of the 1H, 19F, and 7Li nuclei, measured by pulsed‐gradient spin‐echo NMR (PGSE‐NMR) as a function of x, can be rationalized in terms of the weighted contribution of BMI+ cations, TFSI ‘free’ anions, and [Li(TFSI)2] anionic clusters. This implies a negative transference number for lithium. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Electrodeposition of aluminum from ionic liquids has been considered a promising approach to low-temperature aluminum electrolysis. In this study, we first investigated the electrochemical stability of 1-ethyl-3-methylimidazolium chloride ([Emim][Al2Cl7]) electrolyte, which is a typically used electrolyte for aluminum electrodeposition. It was found that part of imidazole ions decomposed on the cathode during the electrolysis process, especially when the temperature was at or over 353 K. In order to enhance the stability of the electrolyte, we further studied the effects of lithium salt and lithium bis(oxalato)borate (LiBOB), on the electrochemical stability of the [Emim][Al2Cl7] ionic liquid system. It was found that the electrochemical window of the electrolyte was broadened from 2.59 to 2.74 V at 373 K by addition of 1 mol% LiBOB. With the existence of LiBOB, the reduction current density of Al2Cl7 - increased before ?0.58 V and the electrodissolution of Al was more complete. The possible mechanism on the LiBOB increases the stability of the electrolyte systems also discussed based on our theoretical calculations.  相似文献   

10.
Polycarbonates (4a–d) with various side chain lengths were synthesized by the reaction of 1,4-bis(hydroxyethoxy)benzene derivatives and triphosgene in the presence of pyridine. The polymer electrolytes composed of 4a–d with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) were prepared, and their ionic conductivities and thermal and electrochemical properties were investigated. 4d-Based polymer electrolyte showed the highest ionic conductivity values of 1.0?×?10?4?S/cm at 80 °C and 1.5?×?10?6?S/cm at 30 °C, respectively, at the [LiTFSI]/[repeating unit] ratio of 1/2. Ionic conductivities of these polycarbonate-based polymer electrolytes showed the tendency of increase with increasing the chain length of oxyethylene moieties as side chains, suggestive of increased steric hindrance by side chains. Unique properties were observed for the 4a(n?=?0)-based polymer electrolyte without an oxyethylene moiety. All of polycarbonate-based polymer electrolytes showed good electrochemical and thermal stabilities as polymer electrolytes for battery application.  相似文献   

11.
Li2CoSiO4, a silicate olivine cathode for lithium rechargeable batteries, is synthesized for the first time by sol–gel method using polyacrylic acid (PAA) as the chelating agent. Coupled thermal and vibrational analysis of the gel and also the X-ray diffraction pattern confirms the formation of the sample at 800 °C. 1-Butyl-1-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (BMPyTFSI) solutions of lithium bis(trifuloromethansulfonyl)imide (LiTFSI) having a concentration of 0.2 mol kg?1 is used as electrolyte. The electrochemical stability window of this electrolyte is found to be >5 V by linear sweep voltammetry technique. The compatibility of Li2CoSiO4 with 0.2 mol kg?1 LiTFSI-BMPyTFSI electrolyte is tested by charge–discharge cycles which show charging and discharging capacities of about 204 and 32 mAh g?1, respectively, in the first cycle.  相似文献   

12.
Manganese oxide-based cathodes are one of the most promising lithium-ion battery (LIB) cathode materials due to their cost-effectiveness, high discharge voltage plateau (above 4.0 V vs. Li/Li+), superior rate capability, and environmental benignity. However, these batteries using conventional LiPF6-based electrolytes suffer from Mn dissolution and poor cyclic capability at elevated temperature. In this paper, the ionic liquid (IL)-based electrolytes, consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfon)imidate (PYR1,4-TFSI), propylene carbonate (PC), lithium bis(trifluoromethanesulfon)imide (LiTFSI), and lithium oxalyldifluoroborate (LiDFOB) additive, were explored for improving the high temperature performance of the LiMn2O4 batteries. It was demonstrated that LiTFSI-ILs/PC electrolyte associated with LiDFOB addition possessed less Mn dissolution and Al corrosion at the elevated temperature in LiMn2O4/Li batteries. Cyclic voltammetry and electrochemical impedance spectroscopy implied that this kind of electrolyte also contributed to the formation of a highly stable solid electrolyte interface (SEI), which was in accordance with the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. Cyclic voltammetry and electrochemical impedance spectroscopy implied that the cells using this kind of electrolyte exhibited better interfacial stability, which was further verified by the polarization measurement and the Li deposition morphology of the symmetric lithium metal cell, thus beneficial for improving the cycling performance of the LiMn2O4 batteries at the elevated temperature. These unique characteristics would endow this kind of electrolyte a very promising candidate for the manganese oxide-based batteries.  相似文献   

13.
Poly(butylene sulfite) (poly-1) was synthesized by cationic ring-opening polymerization of butylene sulfite (1), which was prepared by the reaction of 1,4-butanediol and thionyl chloride, with trifluoromethanesulfonic acid (TfOH) in bulk. The polymer electrolytes composed of poly-1 with lithium salts such as bis(trifluoromethanesulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and bis(fluorosulfonyl)imide (LiN(SO2F)2, LiFSI) were prepared, and their ionic conductivities, thermal, and electrochemical properties were investigated. Ionic conductivities of the polymer electrolytes for the poly-1/LiTFSI system increased with lithium salt concentrations, reached maximum values at the [LiTFSI]/[repeating unit] ratio of 1/10, and then decreased in further more salt concentrations. The highest ionic conductivity values at the [LiTFSI]/[repeating unit] ratio of 1/10 were 2.36?×?10?4 S/cm at 80 °C and 1.01?×?10?5 S/cm at 20 °C. On the other hand, ionic conductivities of the polymer electrolytes for the poly-1/LiFSI system increased with an increase in lithium salt concentrations, and ionic conductivity values at the [LiFSI]/[repeating unit] ratio of 1/1 were 1.25?×?10?3 S/cm at 80 °C and 5.93?×?10?5 S/cm at 20 °C. Glass transition temperature (T g) increased with lithium salt concentrations for the poly-1/LiTFSI system, but T g for the poly-1/LiFSI system was almost constant regardless of lithium salt concentrations. Both polymer electrolytes showed high transference number of lithium ion: 0.57 for the poly-1/LiTFSI system and 0.56 for the poly-1/LiFSI system, respectively. The polymer electrolytes for the poly-1/LiTFSI system were thermally more stable than those for the poly-1/LiFSI system.  相似文献   

14.
Carbon-coated olivine-structured LiFePO4/C composites are synthesized via an efficient and low-cost carbothermal reduction method using Fe2O3 as iron source at a relative low temperature (600 °C). The effects of two kinds of carbon sources, inorganic (acetylene black) and organic (sucrose), on the structures, morphologies, and lithium storage properties of LiFePO4/C are evaluated in details. The particle size and distribution of the carbon-coated LiFePO4 from sucrose (LiFePO4/SUC) are more uniform than that obtained from acetylene black (LiFePO4/AB). Moreover, the LiFePO4/SUC nanocomposite shows superior electrochemical properties such as high discharge capacity of 156 mAh g?1 at 0.1 C, excellent cyclic stability, and rate capability (78 mAh g?1 at 20 C), as compared to LiFePO4/AB. Cyclic voltammetric test discloses that the Li-ion diffusion, the reversibility of lithium extraction/insertion, and electrical conductivity are significantly improved in LiFePO4/SUC composite. It is believed that olivine-structured LiFePO4 decorated with carbon from organic carbon source (sucrose) using Fe2O3 is a promising cathode for high-power lithium-ion batteries.  相似文献   

15.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Ryutaro Souda 《Surface science》2010,604(19-20):1694-1697
Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf2N?) is enriched at the surface relative to hexafluorophosphate (PF6?). The surface of an equimolar mixture of Li[Tf2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) has a nominal composition of [bmim][Tf2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.  相似文献   

17.
S. Abarna  G. Hirankumar 《Ionics》2017,23(7):1733-1743
Novel solid polymer electrolytes, poly(vinylalcohol)-lithium perchlorate (PVA-LiClO4) and PVA-LiClO4-sulfolane are prepared by solvent casting method. The experimental results show that sulfolane addition enhances the ionic conductivity of PVA-LiClO4 complex by three orders. The maximum ionic conductivity of 1.14 ± 0.20 × 10?2 S cm?1 is achieved for 10 mol% sulfolane-added electrolyte at ambient temperature. Polymer-salt-plasticizer interactions are analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Lithium ion transference number is found by AC impedance spectroscopy combined with DC potentiostatic measurements. The results confirm that sulfolane improves the Li+ transference number of PVA-LiClO4 complex to 0.77 from 0.40. The electrochemical stability window of electrolytes is determined by cyclic voltammetry (CV). The broad electrochemical stability window of 5.45 V vs. lithium is obtained for maximum conducting electrolyte. All-solid-state cell is fabricated using maximum conducting electrolyte, and electrochemical impedance study is carried out. It reveals that electrolyte interfacial resistance with Li electrode is very low. The use of PVA-LiClO4-sulfolane as a viable electrolyte material for high-voltage lithium ion batteries is ensured.  相似文献   

18.
Raman spectroscopy was performed on various mixtures of the ionic liquid salt, 1‐ethyl‐3‐methylimidazolium‐bis(trifluoromethylsulfonyl)imide (EMI‐TFSI). When EMI‐TFSI is used in combination with a lithium salt, it could be a potential electrolyte for lithium‐ion or lithium metal batteries. The Raman spectra of EMI‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI 2 M vinylene carbonate (VC) and EMI‐TFSI 0.5 Li‐TFSI 2 M ethylene carbonate (EC) were collected and compared. A comparison of the peak positions of the δs CF3 mode at 742 cm−1 demonstrates that when carbonate additives are present, the lithium ion is no longer interacting with the TFSI anion. Instead, it is coordinated with the carbon–oxygen double bond of the carbonates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Surface structures of equimolar mixtures of imidazolium-based ionic liquids (ILs) having a common cation (1-butyl-3-methylimidazolium ([C4MIM]) or 1-hexyl-3-methylimidazolium ([C6MIM])) and different anions (bis(trifluoromethanesulfonyl)imide ([TFSI]), hexafluorophosphate ([PF6]) or chlorine) are studied using high-resolution Rutherford backscattering spectroscopy (HRBS). Both cations and anions have the same preferential orientations at the surface as in the pure ILs. In the mixture, the larger anion is located shallower than the smaller anion. The [TFSI] anion is slightly enriched at the surface relative to [PF6] with coverage of ~ 60% for the equimolar mixtures of [C4(6)MIM] [TFSI] and [C4(6)MIM] [PF6]. No surface segregation is observed for [C6MIM] [TFSI]0.5[Cl]0.5 and [C6MIM] [PF6]0.5[Cl]0.5. These results are different from the recent TOF-SIMS measurement where very strong surface segregation of [TFSI] was concluded for the mixture of [C4MIM] [TFSI] and [C4MIM] [PF6].  相似文献   

20.
To address if the non‐triphenylamine derivative hole transporting materials such as P3HT (poly‐3‐hexylthiophene) could also exhibit high device efficiency in mesoscopic MAPbI3 perovskite solar cells, we examined the effect of Li‐TFSI (Li‐bis(trifluoromethanesulfonyl) imide) and t‐BP (4‐tert‐butylpyridine) additives added in P3HT on device performance. Unlike the triphenylamine HTMs, the P3HT thiophene HTM without amine moiety was not doped by the additives but its conductivity was significantly improved by the Li‐TFSI/t‐BP mediated additional hole conduction. By inclusion of Li‐TFSI/t‐BP additive, we could fabricate more efficient mesoscopic MAPbI3 perovskite solar cells with smaller hysteresis with respect to scan direction due to Li mediated additional hole conduction. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号