首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
One-dimensional Bi2MoxW1-xO6 (x = 0, 0.2, 0.5, 0.67, and 1) photocatalysts have been successfully synthesized for the first time by a straightforward electrospinning technique with a calcination process. The as-formed Bi2MoxW1-xO6 nanofibers are composed of inter-linked nanosheets of 30–50 nm in size and characterized by thermogravimetric and differential scanning calorimetric, Fourier transform infrared, Raman spectra, X-ray powder diffraction, scanning electron microscope, Brunauer-Emmett-Teller, transmission electron microscope, UV-Vis spectroscopy, photoluminescence, HPLC, and EIS. The photodegradation behaviors towards organic dyes, including rhodamine B (RhB) and methylene blue (MB) are investigated, and the results illustrate that Bi2Mo0.25W0.75O6 nanofibers exhibit the highest photocatalytic performance under visible light irradiation than Bi2MoxW1-xO6 (x = 0, 0.2, 0.5, 0.67, and 1) samples. The possible mechanisms of the enhanced photocatalytic properties are discussed in detail.  相似文献   

2.
Nonstoichiometric Bi2WO6 photocatalyst with the composition of Bi2?+?x WO6?+?1.5x (?0.25 ≤ x ≤ 1) wa synthesized by a facile solid state reaction method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectrum. The Bi2.5WO6.75 photocatalyst showed excellent visible-light-driven photocatalytic performance; nearly 100 % of RhB (10 ppm, pH?=?3?~?4) was decomposed within 25 min, which demonstrated that nonstoichiometric semiconductors could be an efficient visible-light-driven photocatalyst.  相似文献   

3.
A novel morphology of Bi2O3 nanomaterial (nanosquaresheets) has been successfully synthesized in large area by thermal evaporation of commercial Bi2O3 powder at high temperatures. The Bi2O3 nanosquaresheets (NSSs) are perfect regular squares and have sharp, uniform edges. The typical length of the sides is in the range of 200–600 nm. The thickness varies from 30 to 100 nm. Electron microscopy observations show that the Bi2O3 NSSs are single crystalline. The growth of Bi2O3 NSSs is probably controlled by a vapor–solid mechanism. The dominate growth directions are [2̄10] and [1̄2̄2] within the (245) planes. PACS 81.05.Hd; 81.10.Bk; 81.16.Be  相似文献   

4.
Bi4Ti3O12 (BIT) nanoparticles with a narrow average particle size distribution in the range of 11–46 nm was synthesized via a metal-organic polymeric precursor process. The crystallite size and lattice parameter of BIT were determined by XRD analysis. At annealing temperatures >550 °C, the orthorhombic BIT compound with lattice parameters a = 5.4489 Å, b = 5.4147 Å, and c = 32.8362 Å was formed while at lower annealing temperatures orthorhombicity was absent. Reaction proceeded via the formation of an intermediate phase at 500 °C with a stoichiometry close to Bi2Ti2O7. The particle size and the agglomerates of the primary particles have been confirmed by FESEM and TEM. The decomposition of the polymeric gel was ascertained in order to evaluate the crystallization process from TG-DSC analysis. Raman spectroscopy was used to investigate the lattice dynamics in BIT nanoparticles. In addition, investigation of the dependence of the visible emission band around the blue–green color emission on annealing temperatures and grain sizes showed that the effect of grain size plays important roles, and that oxygen vacancies may act as the radiative centers responsible for the observed visible emission band.  相似文献   

5.
MnxV6?xO13 (x?=?0.01, 0.02, 0.03, 0.04) were successfully synthesized via a simple hydrothermal method followed by heat-treatment. Both crystal domain size, electronic conductivity and the lithium diffusion coefficient of the MnxV6?xO13 samples were influenced by the doping amount of Mn2+. When x?=?0.02, the product was nano-sized particles and exhibited the best electrochemical performance. The enhanced electrochemical performance originated from its higher total conductivity and higher lithium diffusion coefficient.  相似文献   

6.
Glasses of 2Bi2O3-3GeO2-xFe2O3 composition, where x = 0–1.5, are obtained under oxidizing and reducing conditions. Glass-ceramic materials are produced by the thermal treatment of the glasses, the properties of which, as well as those of the original glasses, are studied by the methods of X-ray phase analysis and optical and luminescent spectroscopy. It is found that the Fe3+/Fe2+ ion ratio in the samples changes depending on the synthesis conditions of the original glasses and crystallization process.  相似文献   

7.
The polycrystalline Bi8Fe6Ti3O27 compound was prepared by a high-temperature solid-state reaction technique. Preliminary structural analysis by X-ray diffraction (XRD) confirms the formation of a single-phase compound in an orthorhombic crystal system at room temperature. The elemental content of the compound was analyzed by EDAX microanalysis. Microstructural analysis by scanning electron microscopy (SEM) shows that the compound has well defined grains, which are distributed uniformly throughout the surface of the pellet sample. Detailed studies of temperature-dependent dielectric response at various frequencies show dielectric anomalies at 380, 389 and 403°C for 10 kHz, 100 kHz, and 1 MHz respectively. The hysteresis loop observed by applying an electric field of 12 kV/cm on the poled sample with smaller remanent polarization supports the existence of ferroelectricity in this material. The value of d33 of the compound was found to be 19 pC/N.   相似文献   

8.
The heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion of Bi4Ge3O12 single crystals have been measured over a wide temperature range.  相似文献   

9.
Highly c-axis-oriented Sr3Bi4Ti6O21 (SBTi) thin films were fabricated on Pt-coated Si substrates by pulsed laser deposition (PLD). The structures were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). No peaks of SrTiO3 (STO) could be detected in the XRD pattern, indicating the existence of the SBTi single phase. Good ferroelectric hysteresis loops of the films with Pt electrodes were obtained. With an applied field of 400 kV/cm, the measured remanent polarization (Pr) and coercive field (Ec) values were 4.1 C/cm2 and 75 kV/cm respectively. The films showed little fatigue after 2.22×109 switching cycles: the nonvolatile polarizations decreased by less than 5% of the initial values. The dielectric constant and the loss tangent of the films were measured to be 363 and 0.04 at 100 kHz. These results might be advantageous for nonvolatile ferroelectric random access memory (NVFRAM) and dynamic random access memory (DRAM). PACS 77.84.Dy; 77.22.-d; 68.55.Jk  相似文献   

10.
AC impedance spectroscopy technique has been used to study electrical properties of Bi3.25La0.75Ti3O12 (BLT) ceramic. Complex impedance plots were fitted with three depressed semicircles, which are attributed to crystalline layer, plate boundary and grain boundary and all three were found to comprise of universal capacitance nature [C = C0w n−1]. Grain boundary resistance and capacitance evaluated from complex impedance plots have larger values than that of plate boundary and crystalline layer. The activation energies (E a) for DC-conductance in grain boundary, plate boundary and crystalline layer are 0.68 eV, 0.89 eV and 0.89 eV, respectively. Relaxation activation energies calculated from impedance plots showed similar values, 0.81 eV and 0.80 eV for crystalline layer and plate boundary, respectively. These activation energy values are found to be consistent with the E a value of oxygen vacancies in perovskite materials. A mechanism is offered to explain the generation of oxygen vacancies in BLT ceramic and its role in temperature dependence of DC-conductance study.   相似文献   

11.
Near-infrared broadband luminescence from 1100 to 1600 nm was observed in Bi2O3-GeO2 binary glasses. The strongest emission can be observed with 30 mol % Bi2O3 when pumped at 808 nm. The lifetimes of all samples are longer than 200 μs. The glass network was studied by Raman spectra and Bi+ ions are proposed as the infrared luminescence centers in this glass system. Thermal treatment in air results in partly oxidation of Bi+ to Bi2+.  相似文献   

12.
Microstructures and impedance characteristics of chemical-solution-derived Bi3.15Nd0.85Ti3O12 thin films were studied as functions of temperature. A dielectric anomaly was found at around 450°C, corresponding to the paraelectric to ferroelectric transition. Via complex impedance studies, grain and grain boundary contributions to the impedance were separated. The resistance of grain and grain boundaries is found governed by the same kind of space charge with an activation energy around 1.1 eV, close to that of oxygen vacancies in perovskite ferroelectrics. The low temperature ac conductance of BNdT thin films shows a frequency dispersion, which can also be ascribed to space charges mainly due to oxygen vacancies. The results were compared with SrBi2Ta2O9 in terms of oxygen vacancy conductivity.  相似文献   

13.
The dspersion dielectric permeability and ion conductivity of La2Mo2O9 ceramics was studied. It was established that the observed low-frequency dielectric dispersion is due to relaxation effects related to high ion conductivity. It is shown that the phase transition in La2Mo2O9 has characteristic features of a superionic phase transition.  相似文献   

14.
Bi3.25La0.75Ti3-yNbyO12 (y=0.0, 0.03, 0.09, 0.15, 0.21) were synthesized using the solid-state reaction method. The effects of Nb doping on ferroelectric properties were studied through dielectric and P-E measurements. The value of Pr increases with increasing Nb content. Bi3.25La0.75Ti3-yNbyO12 ceramics exhibit a maximum remanent polarization of Pr=27 μC/cm2 at an Nb content of y=0.09. These results indicate that Nb doping can improve the ferroelectric properties of BLT ceramics. The Curie temperature, Tc, decreased with increasing Nb-content, and the ferroelectric phase transition of BLTNy is a second-order transition without thermal hysteresis. PACS 77.55.+f; 77.80.-e; 77.22.Jp  相似文献   

15.
Different techniques for the synthesis of Bi2PbNb2O9, namely the mixed oxide technique, molten salt synthesis, hydrothermal synthesis, co-precipitation and the tartaric acid gel method were investigated and the results on the dielectric properties are reported. The heat-treatment of the precursor powders was the same for all precursor powders. Sintering at 1040 °C under ambient pressure resulted in polycrystalline specimens, while hot-forging at 1040 °C with a pressure of 20 MPa produced c-axis aligned samples. Phase composition and crystallite orientation of the sintered bodies were analyzed by X-ray diffraction. Single-phase material was obtained in all cases. Hot-forging not only yielded c-axis orientation, but also increased the relative densities above 99.4%. The relative permittivity decreased for c-axis oriented material compared to polycrystalline ceramics. Values for the relative permittivity for the hot-forged specimens at 100 °C at 100 kHz varied between 165 and 250, depending on the fabrication method. The Curie temperature for the c-axis aligned samples was 568 °C, independent of the nature of the precursor powders. PACS 77.22.-d; 77.84.-s  相似文献   

16.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

17.
We report X-ray diffraction, magnetization and transport measurements for polycrystalline samples of the new layered superconductor Bi4?x Ag x O4S3(0 ≤ x ≤ 0.2). The superconducting transition temperature (T C) decreases gradually and finally suppressed when x < 0.10. Accordingly, the resistivity changes from a metallic behavior for x < 0.1 to a semiconductor-like behavior for x > 0.1. The analysis of Seebeck coefficient shows there are two types of electron-like carriers dominate at different temperature regions, indicative of a multiband effect responsible for the transport properties. The suppression of superconductivity and the increased resistivity can be attributed to a shift of the Fermi level to the lower-energy side upon doping, which reduces the density of states at E F. Further, our result indicates the superconductivity in Bi4O4S3 is intrinsic and the dopant Ag prefers to enter the BiS2 layers, which may essentially modify the electronic structure.  相似文献   

18.
We analyze the possibility of obtaining M-type hexagonal ferrites of barium, strontium, and lead with multiferroid properties with the help of ceramic technology. Using the modified ceramic technology (especially pure initial raw materials, admixture of B2O3, and sintering in the oxygen atmosphere), we obtained for the first time the BaFe12O19 and SrFe12O19 samples with intense multiferroid properties at room temperature. At the same time, the employed technology does not make it possible to obtain PbFe12O19 samples exhibiting ferroelectricity. The multiferroid characteristics of experimental samples are compared with the characteristics of classical high-temperature multiferroic BiFeO3 and with the characteristics of BaFe12O19, SrFe12O19, and PbFe12O19 ferrite ceramics obtained in accordance with polymer precursor technology. We propose a mechanism explaining multiferroid properties of the hexagonal ferrite ceramic samples and note the importance of our results for applications.  相似文献   

19.
Bi3.25Pr0.75Ti3O12 (BPT) ferroelectric thin films have been prepared by chemical solution deposition on platinized Si substrates. Well-crystallized BPT films can be achieved by 600 °C rapid thermal annealing. The film surface is smooth and crack-free, composed of uniform spherical grains around 90–100 nm in diameter. The electrical properties of Pt/BPT/Pt thin film capacitors were characterized by hysteresis and impedance measurements. The remanent polarization of 700 °C annealed BPT films is around 20 C/cm2 at 120-kV/cm stimulus field. The dielectric constant is around 380 at 10 kHz, 100-mV amplitude. The remanent polarization of BPT film showed a slight reduction, 10% of its original value, after 2.8×109 cycles, while a 30% reduction of non-volatile polarization was observed. PACS 81.15.-z; 77.55.+f; 77.22.Gm  相似文献   

20.
The formation of thermal and electrodynamic states in Bi2Sr2CaCu2O8 under the condition of current input is studied. The analysis is carried out for partial and complete current penetration under the assumption that the superconductor is cooled down to liquid helium temperature at the zero time. When the current input is continuous, the temperature dependence of the Bi2Sr2CaCu2O8 specific heat influences the form of the I-V and I-T characteristics of the superconductor. This effect is observed at high electric fields when both stable and unstable states form. As a result, the nonstationary I-V characteristic of Bi2Sr2CaCu2O8 has the only branch the slope of which is positive and decreases with increasing temperature. Therefore, the higher the rate of current input, the more pronounced the decrease in the slope. It is concluded that one cannot find the current above which instability develops from the Bi2Sr2CaCu2O8 I-V characteristic if the current input is continuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号