共查询到20条相似文献,搜索用时 15 毫秒
1.
Some oxides have been investigated as alternative materials for Li-ion batteries. In particular, the In2O3 anodic compound, synthesized in our laboratory, and some commercial powders (PbO, PbO2 and Fe2O3) were studied. The morphology of the oxides was analyzed by SEM investigation. The electrochemical characteristics obtained
on composite thin-film electrodes based on these materials are here reported, in term of specific capacity and cyclability.
Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001. 相似文献
2.
Disordered carbonaceous materials have been obtained by pyrolysis of coffee shells at 800 and 900 °C with pore-forming substances such as KOH and ZnCl2. X-ray diffraction studies revealed a carbon structure with a large number of disorganized single layer carbon sheets. The structure and morphology of the materials have been greatly varied upon the addition of porogens. The prepared carbon materials have been subjected to cycling studies. The KOH-treated products offered higher capacity with improved stability than those with untreated and ZnCl2-treated one. 相似文献
3.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs. 相似文献
4.
Junmin Xu Haibing Tang Tingting Xu Di Wu Zhifeng Shi Yongtao Tian Xinjian Li 《Ionics》2017,23(12):3273-3280
Porous hollow metal oxides derived from nanoscaled metal-organic framework (MOF) have drawn tremendous attention due to their high electrochemical performance in advanced Li-ion batteries (LIBs). In this work, porous NiO hollow quasi-nanospheres were fabricated by an ordinary refluxing reaction combination of a thermal decomposition of new nanostructured Ni-MOF, i.e., {Ni3(HCOO)6·DMF}n. When evaluated as an anode material for lithium ion batteries, the MOF derived NiO electrode exhibits high capacity, good cycling stability and rate performance (760 mAh g?1 at 200 mA g?1 after 100 cycles, 392 mAh g?1 at 3200 mA g?1). This superior lithium storage performance is mainly attributed to the unique hollow and porous nanostructure of the as-synthesized NiO, which offer enough space to accommodate the dramstic volume change and alleviate the pulverization problem during the repeated lithiation/delithiation processes, and provide more electro-active sites for fast electrochemical reactions as well as promote lithium ions and electrons transfer at the electrolyte/electrode interface. 相似文献
5.
Hollow Sn-Co nanospheres have been fabricated by galvanic replacement reaction. In particular, the hollow resultants with different shell thickness and void space can be obtained using sacrificial templates with different sizes. The structural evolution of Sn-Co hollow microspheres and structure changes during charge/discharge process were studied using XRD, SEM, and TEM. As an anodic material, the hollow resultants with thin shell and relatively large void space exhibited a good reversible capacity of 502 mAh g?1 at a current density of 100 mA g?1 and a coulomb efficiency over 99 % after 100 cycles. The contributions of the hollow structure and the inactive Co element to electrochemical performance were verified by galvanostatic charge/discharge cycling, electrochemical impedance spectroscope, and TEM measurements. A possible mechanism for hollow structure with different shell thickness to alleviate the volume change was proposed. 相似文献
6.
Jiaoyang Li Li Wang Yumei Ren Yong Zhang Youfu Wang Aiguo Hu Xiangming He 《Ionics》2016,22(2):167-172
A distinctive structure of carbon materials for Li-ion batteries is proposed for the preparation of red phosphorus-carbon composites. The slit-shaped porous carbon is observed with aggregation of plate-like particles, whose isotherm belongs to the H3 of type IV. The density functional theory (DFT) method reveals the presence of micro-mesopores in the 0.5–5 nm size range. The unique size distribution plays an important role in adsorbing phosphorus and electrochemical performance. The phosphorus-slit-shaped porous carbon composite shows initial capacity of 2588 mAh g?1, reversible capacity of 1359 mAh g?1 at a current density of 100 mA g?1. It shows an excellent coulombic efficiency of ~99 % after 50 cycles. 相似文献
7.
Zhewei Yang Yang Yang Huajun Guo Zhixing Wang Xinhai Li Yu Zhou Jiexi Wang 《Ionics》2018,24(11):3405-3411
Compact-structured silicon/carbon composites consisting of silicon, graphite, and coal tar pitch pyrolysis carbon are prepared via two heating procedures after liquid solidification. The first heating procedure plays a key role in the formation of compact-structured silicon/carbon composites, in which the coal tar pitch has a good fluidity at 180 °C above the softening temperature, and it is easy to form a uniform coating on the surface of materials. At the same time, the fluidic coal tar pitch could also fill the voids between particles to form compact-structured silicon/carbon composites. As-prepared silicon/carbon composites exhibit moderate reversible capacity of 602.4 mAh g?1, high initial charge-discharge efficiency of 82.3%, and good cycling stability with the capacity retention of 93.4% at 0.1 A g?1 after 50 cycles. It is noteworthy that the synthetic method is scalable which is suitable for mass production. 相似文献
8.
采用基于密度泛函理论的第一性原理平面波赝势方法,计算不同数量的锂离子引起的硅材料晶体结构的变化以及在嵌锂过程中形成LixSi(x=1、2、2.4、4.4)合金相的形成能与电子结构.采用LST/QST方法计算过渡态,模拟合金体相中的锂离子迁移过程.计算结果表明,随着嵌锂数量的增加,硅晶胞的体积在不断增大;LixSi合金相的形成能为负值,表明在嵌锂过程中锂离子和硅原子可以自发形成这些合金相,其中Li7Si3合金最容易形成;随着嵌锂量的增加,锂离子在费米能级处s轨道提供的电子数逐渐增加,锂硅合金在费米能级处的电子数量呈增大趋势,表明锂硅合金的导电性越来越优;常温下Li2Si体相中很难直接形成锂离子空位,但锂离子空位的迁移过程很容易发生. 相似文献
9.
CuS/graphene composite has been synthesized by the one-pot hydrothermal method using thiourea as the sulfur source and reducing agent. The formation of CuS nanoparticles and the reduction of graphene oxide occur simultaneously during the hydrothermal process, which enables a uniform dispersion of CuS nanoparticles on the graphene nanosheets. The electrochemical performance of CuS/graphene composite was studied as anode materials for lithium ion batteries. The obtained CuS/graphene composite exhibits a relative high reversible capacity and good cycling stability. The good electrochemical performance of CuS/graphene composite can be attributed to graphene, which improves the electronic conductivity of composite and enhances the interfacial stability of electrode and electrolyte. 相似文献
10.
Hard carbon is considered as the most promising anode material for practical sodium ion batteries. Herein, we report biomass-derived hard carbon made from corn straw piths through a simple carbonization process. X-ray diffraction patterns and Raman spectra elucidated highly disordered structures, and high-resolution transmission electron microscopy confirmed that the hard carbons have many local ordered structures containing turbostratic nanodomains and more nanovoids surround the turbostratic nanodomains. The electrochemical performances of the hard carbons were systematically investigated in sodium ion batteries. By optimizing the carbonization temperature, the sample carbonized at 1400 °C (HC1400) exhibited high reversible capacity of 310 mAh g?1 and good cycling stability; the capacity can still retain 274 mAh g?1 after 100 cycles. More importantly, HC1400 can deliver reversible capacity of 206 mAh g?1 with 79% retention rate after 700 cycles measured at a current density of 200 mA g?1, which is much better than those in most previous reports. This study provides a way to develop inexpensive, renewable, and recyclable materials from biomasses towards next-generation energy storage applications. 相似文献
11.
Three morphologies of two-dimension Boron with metallicity have been successfully synthetized by experiments. To access the potential of β12 borophene (□) and χ3 borophene monolayer (◇) as anode materials for lithium ion batteries, first-principles calculations based on density functional theory (DFT) are performed. Lithium atom is preferentially absorbed over the center of the hexagonal B atom hollow of β12 and χ3 borophene monolayer. The fully lithium storage phase of β12 and χ3 borophene monolayer corresponds to Li8B10 and Li8B16 with a theoretical specific capacity of 1983 and 1240 mA h g?1, respectively, much larger than other two-dimension materials. Interestingly, lithium ion diffusion on β12 borophene (□) monolayer is extremely fast with a low-energy barrier of 41 meV. Meanwhile, lithiated-borophene monolayer shows enhanced metallic conductivity during the whole lithiation process. Compared to the buckled borophene (△), the extremely enhanced lithium adsorption energy of β12 and χ3 phase with vacancies weakens lithium ion diffusion. Therefore, it is important to control the generation of vacancy in the buckled borophene (△) anode for lithium ion batteries. Borophene is a promising candidate with high capacity and high rate capability for anode material in lithium ion batteries. 相似文献
12.
The SnO2 nano-flower/graphene (SnO2-NF/GN) composites were synthesized by using graphene (GN) and SnO2 nano-flower (SnO2-NF). Among them, the SnO2-NFs were prefabricated by using sodium hydroxide and stannic chloride pentahydrate (SnCl4·5H2O) as raw materials. The results of SEM show that the SnO2-NFs are uniformly dispersed on the surface of GN. Furthermore, compared with the pure SnO2, the as-prepared SnO2-NF/GN composites displayed superior cycle performace and high rate capability. The SnO2-NF/GN composite delivers a specific capacity of 650 mAh g?1 after 60 cycles and an excellent rate capability of 480 mAh g?1 at 2000 mA g?1. 相似文献
13.
Silicon/graphite/carbon (Si/G/CTS-C) composite, based on nano-silicon, flake graphite, and chitosan-derived carbon (CTS-C), was prepared by spray drying and subsequent pyrolysis. The results of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy illustrate that chitosan is a good dispersion agent and chitosan-derived carbon is N-doped. The results indicate that the initial charge capacity of Si/G/CTS-C composite is 613.9 mAh g?1 at a current density of 100 mA g?1 corresponding to an initial coulombic efficiency of 81.89%. Besides, the Si/G/CTS-C composite exhibits higher specific capacity, more superior rate capability, better cycling performance, and lower impedance than that of silicon/graphite/phenolic resin-derived carbon (Si/G/P-C) composite. 相似文献
14.
As previously reported, blends of pitch and polysilanes, (Me2Si)x(PhMeSi)y, with various pitch/polysilane ratios were pyrolysed at 1000 °C [W. Xing, A.M. Wilson, G. Zank, J.R. Dahn, Solid State Ionics 93 (1997) 239]. Some of the pyrolysed mixtures demonstrated large reversible capacities for lithium insertion (600 mA h g−1), small irreversible capacities (150–200 mA h g−1) and small hysteresis between charge and discharge cycles. Here, we investigate the role of the oxygen in these materials. The magnitude of the irreversible capacity and hysteresis are correlated to the oxygen content. This suggests that these materials are disordered carbons containing nanodispersed silicon oxycarbide clusters and not nanodispersed silicon, as was previously suggested. This does not change our opinion that pyrolysed pitch-polysilane blends are good alternatives to carbons for anode materials in lithium ion batteries. 相似文献
15.
Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g?1 at 1.5 A g?1; moreover, when the current density returns to 0.2 A g?1, the discharge capacity is still 1692 mAh g?1 and remains 1453 mAh g?1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si. 相似文献
16.
硅功能化石墨烯(硅化烯)作为锂离子电池的负极材料, 一旦发生分层或粉化等损伤现象, 会严重地降低材料的电子输运能力和储锂容量, 减少电池的使用寿命, 因此要求负极材料具有较强的力学可靠性. 考虑到传统分子动力学方法的模拟尺度很难达到硅化烯负极材料的真实尺度, 首先采用Tersoff 势函数和Lennard-Jones 势函数建立了多种硅化烯的全原子数值模型, 计算材料的各种弹性模量和吸附能; 然后采用珠子-弹簧结构, 根据力学平衡条件和能量守恒定律, 结合全原子模型的计算结果, 建立了硅化烯粗粒模型及其系统的能量方程; 最后, 通过对比石墨烯粗粒模型与其全原子模型的拉伸性能, 验证了硅化烯粗粒模型的有效性. 相似文献
17.
Artificial graphite anode material was modified by coating an amorphous carbon layer on the particle surface via a sol-gel and pyrolysis route. The electrochemical measurements demonstrate that appropriate carbon coating can increase the specific capacity and the initial coulombic efficiency of the graphite material, while excessive carbon coating leads to the decrease in specific capacity. Thick coating layer is obviously unfavorable for the lithium ion diffusion due to the increased diffusion distance, but the decreased specific surface area caused by carbon coating is beneficial to the decrease of initial irreversible capacity loss. The sample coated with 5 wt.% glucose exhibits a stable specific capacity of 340 mAhg?1. Carbon coating can remarkably enhance the rate capability of the graphite anode material, which is mainly attributed to the increased diffusion coefficient of lithium ion. 相似文献
18.
Silicon/carbon nanocomposites are prepared by dispersing nano-sized silicon in mesophase pitch and a subsequent pyrolysis process. In the nanocomposites, silicon nanoparticles are homogeneously distributed in the carbon networks derived from the mesophase pitch. The silicon/carbon nanocomposite delivers a high reversible capacity of 841 mAh g?1 at the current density of 100 mA g?1 at the first cycle, high capacity retention of 98 % over 30 cycles, and good rate performance. The superior electrochemical performance of nanocomposite is attributed to the carbon networks with turbostratic structure, which enhance the conductivity and alleviate the volume change of silicon. 相似文献
19.
采用基于密度泛函理论的第一性原理方法,研究了本征石墨烯及缺陷石墨烯对钠原子的吸附行为.主要研究了三种石墨烯:本征石墨烯(P-graphene)、硼掺杂的石墨烯(Defect-Ⅰ)和硼掺杂的叽咯石墨烯(Defect-Ⅱ).结果表明,与P-graphene相比,Defect-Ⅰ和Defect-Ⅱ在吸附能、电荷密度、态密度和储钠量方面表现出很大的差异.Defect-Ⅰ和Defect-Ⅱ对钠原子的吸附能分别是-3.250 eV和-2.332 eV,约为P-graphene对钠原子吸附能的1.71倍和1.23倍.态密度计算结果表明,Defect-Ⅰ和Defect-Ⅱ中钠原子与硼原子发生轨道杂化,而P-graphene中不存在轨道杂化现象.Defect-Ⅰ和Defect-Ⅱ对钠原子的吸附量分别是9和8个,与P-graphene相比提高.因此,石墨烯中掺杂硼有望成为一种新型的储钠材料. 相似文献
20.
A comparative investigation was carried out on carbon black and multiwalled carbon nanotubes as conductive additives in spherical natural graphite for lithium ion batteries. Scanning electron microscopy images showed that carbon nanotubes interlaced graphite particles in series to form a three-dimensional network. The constant current charge-discharge experiments showed that carbon nanotubes were more effective in improving reversible capacity and cycle stability. The reversible capacity was improved to 366 mAh/g and the cycle stability was improved effectively when carbon nanotubes were used. The research is of potential interest to the application of carbon nanotubes as conductive additives in anode materials for high-power lithium ion batteries. 相似文献