首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Carbon-coated olivine-structured LiFePO4/C composites are synthesized via an efficient and low-cost carbothermal reduction method using Fe2O3 as iron source at a relative low temperature (600 °C). The effects of two kinds of carbon sources, inorganic (acetylene black) and organic (sucrose), on the structures, morphologies, and lithium storage properties of LiFePO4/C are evaluated in details. The particle size and distribution of the carbon-coated LiFePO4 from sucrose (LiFePO4/SUC) are more uniform than that obtained from acetylene black (LiFePO4/AB). Moreover, the LiFePO4/SUC nanocomposite shows superior electrochemical properties such as high discharge capacity of 156 mAh g?1 at 0.1 C, excellent cyclic stability, and rate capability (78 mAh g?1 at 20 C), as compared to LiFePO4/AB. Cyclic voltammetric test discloses that the Li-ion diffusion, the reversibility of lithium extraction/insertion, and electrical conductivity are significantly improved in LiFePO4/SUC composite. It is believed that olivine-structured LiFePO4 decorated with carbon from organic carbon source (sucrose) using Fe2O3 is a promising cathode for high-power lithium-ion batteries.  相似文献   

2.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

3.
Lithium manganese oxide (LiMn2O4) has been prepared using sol-gel technique under acidic (pH = 5.8) and alkaline (pH = 9) conditions with tartaric acid as chelating agent. X-ray studies show that under acidic condition, an Mn2O3 peak was observed indicating the presence of impurities. No impurity was observed for LiMn2O4 under alkaline conditions. The particle size is mostly in the range of 124 to 185 nm from HR-TEM. The lithium diffusion coefficient, D Li+ in LiMn2O4 is of the order 10?9 cm2 s?1. By using density functional theory (DFT) calculations, structural properties have been obtained. The specific discharge capacity of the cells with LiMn2O4 prepared under alkaline condition and with LiMn2O4 prepared under acidic condition discharged at 0.5 C is in the ranges of 132 to 142 and 128 to 139 mAh g?1, respectively.  相似文献   

4.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

5.
Misfit-layered calcium cobaltites (Ca3Co4O9, Ca3Co3.9Fe0.1O9, and Ca3Co3.9Mn0.1O9), as anode materials for lithium-ion batteries, were synthesized by a simple hydro-decomposition method. All synthesized samples do not show any impurity phase. They exhibited plate-like particle with the particle size of 1–2 μm. The specific capacities of doped samples showed higher electrochemical performance compared to the undoped sample. After charge/discharge of 50 cycles, the specific capacities of Ca3Co4O9, Ca3Co3.9Fe0.1O9, and Ca3Co3.9Mn0.1O9 were 343, 562, and 581 mAh g?1, respectively. The doped samples showed an increase of over 60% compared to the undoped sample. The cyclic voltammetry profile of the doped samples showed the enhanced reactivity corresponding to their improved electrochemical performance. The capacity improvement of doped samples resulted from the metal oxide/Li conversion reactions, volume change, and high reactivity.  相似文献   

6.
The photomagnetic behavior of single-crystal yttrium iron garnet Y3Fe5O12 doped with iridium, substituting the cation of iron in the octahedron, is investigated upon illumination at room temperature. It is shown that the photomagnetic properties of Y3Fe4.97Ir0.03O12 samples are to a large degree related to the impurity distortion of the sublattice of iron atoms in octahedral coordination, rather than solely to the possible presence of Fe4+ cations, which are inactive at room temperature and may even be lacking in single crystals doped with iridium. It is concluded that the photoinduced change in the magnetic parameters of this material is determined by the location of impurity cations and increased surface imperfection of the material. The reasons for the different photoactive behavior of this promising material for spintronics, that is, a singlecrystal yttrium iron garnet, are summarized.  相似文献   

7.
Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors.  相似文献   

8.
Bay functionalized perylene diimide substituted with pyridine isomers, (2-pyridine (2HMP-PDI), 3-pyridine (3-HMP-PDI) and 4-pyridine (4-HMP-PDI)) have been synthesized and explored for selective coloro/fluorimetric sensing of heavy transition metal ions. HMP-PDIs showed strong NIR absorption (760–765 nm) in DMF. The absorption and fluorescence of HMP-PDIs have been tuned by make use of pyridine isomers. Reddish-orange color was observed for 2-HMP-PDI (λmax = 437, 551, 765 nm) whereas 4-HMP-PDI exhibited light green (λmax = 432, 522, 765 nm). 3-HMP-PDI showed orange-yellow (λmax = 431, 524, 762 nm). The fluorescence spectra of 2-, 3- and 4-HMP-PDI showed λmax at 585, 538, 546 nm, respectively. Interestingly, HMP-PDI dyes showed selective color change (intense pink color) and fluorescence quenching for Fe3+ and Al3+ metal ions in DMF. Absorbance spectra revealed complete disappearance of NIR absorption and intensification/appearance of new peak at lower wavelength. The concentration dependent studies suggest that 4-HMP-PDI can detect up to 36.52 ppb of Fe3+ and 43.12 ppb of Al3+ colorimetrically. The interference studies in presence of other metal ions confirmed the good selectivity for Fe3+ and Al3+. The mechanistic studies indicate that Lewis acidic character of Fe3+ and Al3+ ions were responsible for selective color change and fluorescence quenching.  相似文献   

9.
Single-crystal (100) and (001) TiO2 rutile substrates have been implanted with 40 keV Fe+ at room temperature with high doses in the range of (0.5–1.5) × 1017 ions/cm2. A ferromagnetic resonance (FMR) signal has been observed for all samples with the intensity and the out-of-plane anisotropy increasing with the implantation dose. The FMR signal has been related to the formation of a percolated metal layer consisting of close-packed iron nanoparticles in the implanted region of TiO2 substrate. Electron spin resonance (ESR) signal of paramagnetic Fe3+ ions substituting Ti4+ positions in the TiO2 rutile structure has been also observed. The dependences of FMR resonance fields on the DC magnetic field orientation reveal a strong in-plane anisotropy for both (100) and (001) substrate planes. An origin of the in-plane anisotropy of FMR signal is attributed to the textured growth of the iron nanoparticles. As result of the nanoparticle growth aligned with respect to the structure of the rutile host, the in-plane magnetic anisotropy of the samples reflects the symmetry of the crystal structure of the TiO2 substrates. Crystallographic directions of the preferential growth of iron nanoparticles have been determined by computer modeling of anisotropic ESR signal of substitutional Fe3+ ions.  相似文献   

10.
The effect of Fe2O3 in sodium zinc phosphate glass system containing CuO with the chemical composition 40P2O5:38ZnO:1CuO:(21 ? x)Na2O:xFe2O3 (where x = 1, 2, 3, 4, 5 and 6 mol%) has been studied. The glass formability of the prepared samples was examined by means of XRD which proved that there are no natural crystal contents. Archimedes method has been employed to measure the density of the prepared glass samples hence, the molar volume was calculated. The density and the molar volume were found to be increased by increasing Fe2O3 content. The optical spectroscopic analysis for the obtained glass samples has been carried out over the whole range (190–1000 nm) for studying the effect of bandpass absorption glass filter, its color peak center and UV cut-off. The center for bandpass filter is found to exhibit a red shift by increasing Fe2O3 content. Moreover, all glass samples showed a bandstop in UV-range which was increased by increasing Fe2O3 content. The results reveal the practicality of this glass composition in optical color glass bandpass filter for UV preventing applications such as UV-Laser protection.  相似文献   

11.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

12.
A novel approach has been made to tailor Niobium pentoxide (Nb2O5) as a coating material on the surface of lithium iron phosphate (LiFePO4) via a facile polyol technique. The coating content was optimized at 1 wt%. The superficial coating demonstrated superior discharge capacity than the pristine LiFePO4. However, increasing the coating content further would result in a capacity loss. This may be due to the electrochemical inactiveness that increases with the content of the coating material, and 1 wt% of Nb2O5-coated LiFePO4 sample exhibits initial discharge capacity of 163 mAh g?1 at a current of 0.1 C and retains a stable discharge capacity of 143 mAh g?1 up to 400 cycles at 1 C rate with a coulombic efficiency of 98%.
Graphical abstract ?
  相似文献   

13.
Undoped and different concentration Nd3+ doped SrNb2O6 powders with columbite structure were synthesized by molten salt process using a mixture of strontium nitrate and niobium (V) oxide and NaCl-KCl salt mixture as a flux under relatively low calcining temperature. X-ray diffraction analysis results indicated that SrNb2O6 phases found to be orthorhombic columbite single phase for undoped, 0.5 and 3 mol% Nd3+ doping concentrations. Phase composition of the powders was examined by SEM-EDS analyses. Radioluminescence properties of Nd3+ doped samples from UV to near-IR spectral region were studied. The emissions increased with the doping concentration of up to 3 mol%, and then decreased due to concentration quenching effect. There is a sharp emission peak around 880 nm associated with 4F5/2 → 4I9/2 transition in the Nd3+ ion between 300 and 1100 nm. The broad emission band intensity was observed from 400 to 650 nm where the peak intensities increased by increasing Nd3+ doping concentration. All the measurements were taken under the room temperature.  相似文献   

14.
Single-phase polycrystalline La0.75Sr0.25Co0.9857Fe0.02O3 samples have been prepared by solidstate ceramic technology. The samples have the rhombohedral structure (space group \(R\bar 3c\)). The studies of perovskite La0.75Sr0.25Co0.9857Fe0.02O3 by Mössbauer spectroscopy on impurity 57Fe nuclei in the temperature range of 5–293 K have revealed the existence of a superparamagnetic relaxation in the temperature range of 100–210 K. The parameters of hyperfine interactions (hyperfine magnetic fields, line shifts, and quadrupole shifts) and the anisotropy energy have been measured, and the frequencies of magnetic moment relaxation of iron ions have been estimated.  相似文献   

15.
In this work, the commercial carbon paper was firstly peeled in K2CO3 solution and then was further treated in a KNO3 solution to form functional exfoliation graphene (FEG) on the commercial carbon paper. The FEG/carbon paper was characterized by Raman spectra and scanning electron microscopy, confirming that some typical layered fold graphenes were successfully peeled off and stood on the carbon paper matrix. Then, Fe3O4 nanoparticles (NPs) were grown on the surface of FEG/carbon paper and the as-prepared Fe3O4 NPs/FEG/carbon paper was directly used as supercapacitor electrode. The specific capacitance of Fe3O4 NPs/FEG/carbon paper was about 316.07 F g?1 at a current density of 1 A g?1. Furthermore, the FEG/carbon papers were also functionalized by benzene carboxylic acid to form FFEG/carbon papers, and then the Fe3O4 NPs were grown on the surface of FFEG/carbon paper. The specific capacitance of Fe3O4 NPs/FFEG/carbon paper was 470 F g?1 at a current density of 1 A g?1, superior to some previous reported results. This work might provide a new strategy to prepare various nanostructures on FFEG/carbon papers for future applications.  相似文献   

16.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

17.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

18.
Pr-doped Li4Ti5O12 in the form of Li4?x/3Ti5?2x/3PrxO12 (x = 0, 0.01, 0.03, 0.05, and 0.07) was synthesized successfully by an electrospinning technique. ICP shows that the doped samples are closed to the targeted samples. XRD analysis demonstrates that traces of Pr3+ can enlarge the lattice parameter of Li4Ti5O12 from 8.3403 to 8.3765 Å without changing the spinel structure. The increase of lattice parameter is beneficial to the intercalation and de-intercalation of lithium-ion. XPS results identify the existence form of Ti is mainly Ti4+ and Ti3+ in minor quantity in Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples due to the small amount of Pr3+. The transition from Ti4+ to Ti3+ is conducive to the electronic conductivity of Li4Ti5O12. FESEM images show that all the nanofibers are well crystallized with a diameter of about 200 nm and distributed uniformly. The results of electrochemical measurement reveal that the 1D Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) nanofibers display enhanced high-rate capability and cycling stability compared with that of undoped nanofibers. The high-rate discharge capacity of the Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples is excellent (101.6 mAh g?1 at 50 °C), which is about 58.48 % of the discharge capacity at 0.2 °C and 4.3 times than that of the bare Li4Ti5O12 (23.5 mA g?1). Even at 10 °C (1750 mA g?1), the specific discharge capacity is still 112.8 mAh g?1 after 1000 cycles (87.9 % of the initial discharge capacity). The results of cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) illustrate that the Pr-doped Li4Ti5O12 electrodes possess better dynamic performance than the pure Li4Ti5O12, further confirming the excellent electrochemical properties above.  相似文献   

19.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

20.
The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) with submicron particle size (LNMO-8505P70010) has been synthesized based on nickel-manganese compound, which is obtained from pre-sintering the nickel-manganese hydroxide precipitation at 850 °C. The LNMO materials based on nickel-manganese hydroxide (LNMO-70010, LNMO-850570010, and LNMO-8501070010) have also been synthesized for comparison to study the pre-sintering impact on the properties of LiNi0.5Mn1.5O4 material. The morphologies and structures of the obtained samples have been analyzed by X-ray powder diffraction and scanning electron microscopy. The nickel-manganese compound has a spinel structure with high crystallinity, making it a good precursor to form high-performance LNMO with lower content of Mn3+ and impurity. The obtained LNMO-8505P70010 delivers discharge capacities of 125.4 mA h g?1 at 0.2 C, and the capacity retention of 15 C reaches 73.8 % of the capacity retention of 0.2? C. Furthermore, it shows a superior cyclability with the capacity retention of 96.4 % after 150 cycles at 5 ?C. Compared with the synthesis method without pre-sintering, the synthesis method with pre-sintering can save energy while reaching the same discharge specific capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号