首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper we provide an axiomatic foundation to Orlicz risk measures in terms of properties of their acceptance sets, by exploiting their natural correspondence with shortfall risk Föllmer and Schied (Stochastic finance. De Gruyter, Berlin, 2011), thus paralleling the characterization in Weber (Math Financ 16:419–442, 2006). From a financial point of view, Orlicz risk measures assess the stochastic nature of returns, in contrast to the common use of risk measures to assess the stochastic nature of a position’s monetary value. The correspondence with shortfall risk leads to several robustified versions of Orlicz risk measures, and of their optimized translation invariant extensions (Rockafellar and Uryasev in J Risk 2:21–42, 2000, Goovaerts et al. in Insur Math Econ 34:505–516, 2004), arising from an ambiguity averse approach as in Gilboa and Schmeidler (J Math Econ 18:141–153, 1989), Maccheroni et al. (Econometrica 74:1447–1498, 2006), Chateauneuf and Faro (J Math Econ 45:535–558, 2010), or from a multiplicity of Young functions. We study the properties of these robust Orlicz risk measures, derive their dual representations, and provide some examples and applications.  相似文献   

2.
We present a unified framework to identify spectra of Jacobi matrices. We give applications of the long-standing problem of Chihara (Mt J Math 21(1):121–137, 1991, J Comput Appl Math 153(1–2):535–536, 2003) concerning one-quarter class of orthogonal polynomials, to the conjecture posed by Roehner and Valent (SIAM J Appl Math 42(5):1020–1046, 1982) concerning continuous spectra of generators of birth and death processes, and to spectral properties of operators studied by Janas and Moszyńki (Integral Equ Oper Theory 43(4):397–416, 2002) and Pedersen (Proc Am Math Soc 130(8):2369–2376, 2002).  相似文献   

3.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

4.
Regime-switching models (RSM) have been recently used in the literature as alternatives to the Black-Scholes model. Several authors favor RSM as being more realistic since, by construction, they model those exogenous macroeconomic cycles against which asset prices evolve. In the context of derivatives pricing, these models lead to incomplete markets and therefore there exist multiple Equivalent Martingale Measures (EMM) yielding different pricing rules. A fair amount of literature (Buffington and Elliott, Int J Theor Appl Finance 40:267–282, 2002; Elliott et al., Ann Finance 1(4):23–432, 2005) focuses on conveniently choosing a family of EMM leading to closed-form formulas for option prices. These studies often make the assumption that the risk associated with the Markov chain is not priced. Recently, Siu and Yang (Acta Math Appl Sin Engl Ser 25(3):339–388, 2009), proposed an EMM kernel that takes into account all risk components of a regime-switching Black-Scholes model. In this paper, we extend the results and observations made in Siu and Yang (Acta Math Appl Sin Engl Ser 25(3):339–388, 2009) in order to include more general Lévy regime-switching models that allow us to assess the influence of jumps on the price of risk. In particular, numerical results are given for Regime-switching Jump-Diffusion and Variance-Gamma models. Also, we carry out a comparative analysis of the resulting option price formulas with existing regime-switching models such as Naik (J Financ 48:1969–1984, 1993) and Boyle and Draviam (Insur Math Econ 40:267–282, 2007).  相似文献   

5.
Aumann (Econometrica 34: 1–17, 1966) established the existence of competitive equilibria in exchange economies with a continuum of traders. This result has been extended to special production economies under the condition that the production sets are countably additive or superadditive in the literature. In this paper, we extend Aumann’s result to coalition production economies with a continuum of traders in which each coalition can have a different production set and the production sets need not to be additive or superadditive. Our new existence theorem for competitive equilibrium implies the classical result by Hildenbrand (Econometrica 38: 608–623, 1970), and implies those by Sondermann (J Econ Theory 8: 259–291, 1974) and Greenberg et al. (J Math Econ 6: 31–41, 1979) under the assumption that the production sets are convex.  相似文献   

6.
In this short note, we generalized an energy estimate due to Malchiodi–Martinazzi (J Eur Math Soc 16:893–908, 2014) and Mancini–Martinazzi (Calc Var 56:94, 2017). As an application, we used it to reprove existence of extremals for Trudinger–Moser inequalities of Adimurthi–Druet type on the unit disc. Such existence problems in general cases had been considered by Yang  (Trans Am Math Soc 359:5761–5776, 2007; J Differ Equ 258:3161–3193, 2015) and Lu–Yang (Discrete Contin Dyn Syst 25:963–979, 2009) by using another method.  相似文献   

7.
We discuss the existence of a blow-up solution for a multi-component parabolic–elliptic drift–diffusion model in higher space dimensions. We show that the local existence, uniqueness and well-posedness of a solution in the weighted \(L^2\) spaces. Moreover we prove that if the initial data satisfies certain conditions, then the corresponding solution blows up in a finite time. This is a system case for the blow up result of the chemotactic and drift–diffusion equation proved by Nagai (J Inequal Appl 6:37–55, 2001) and Nagai et al. (Hiroshima J Math 30:463–497, 2000) and gravitational interaction of particles by Biler (Colloq Math 68:229–239, 1995), Biler and Nadzieja (Colloq Math 66:319–334, 1994, Adv Differ Equ 3:177–197, 1998). We generalize the result in Kurokiba and Ogawa (Differ Integral Equ 16:427–452, 2003, Differ Integral Equ 28:441–472, 2015) and Kurokiba (Differ Integral Equ 27(5–6):425–446, 2014) for the multi-component problem and give a sufficient condition for the finite time blow up of the solution. The condition is different from the one obtained by Corrias et al. (Milan J Math 72:1–28, 2004).  相似文献   

8.
We consider the problem of hedging a European contingent claim in a Bachelier model with temporary price impact as proposed by Almgren and Chriss (J Risk 3:5–39, 2001). Following the approach of Rogers and Singh (Math Financ 20:597–615, 2010) and Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), the hedging problem can be regarded as a cost optimal tracking problem of the frictionless hedging strategy. We solve this problem explicitly for general predictable target hedging strategies. It turns out that, rather than towards the current target position, the optimal policy trades towards a weighted average of expected future target positions. This generalizes an observation of Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b) from their homogenous Markovian optimal investment problem to a general hedging problem. Our findings complement a number of previous studies in the literature on optimal strategies in illiquid markets as, e.g., Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b), Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), Rogers and Singh (Math Financ 20:597–615, 2010), Almgren and Li (Option hedging with smooth market impact. Preprint, 2015), Moreau et al. (Math Financ. doi: 10.1111/mafi.12098, 2015), Kallsen and Muhle-Karbe (High-resilience limits of block-shaped order books. Preprint, 2014), Guasoni and Weber (Mathematical Financ. doi: 10.1111/mafi.12099, 2015a; Nonlinear price impact and portfolio choice. Preprint, 2015b), where the frictionless hedging strategy is confined to diffusions. The consideration of general predictable reference strategies is made possible by the use of a convex analysis approach instead of the more common dynamic programming methods.  相似文献   

9.
In this paper we derive a series space \(\vert C_{\lambda,\mu} \vert _{k}\) using the well known absolute Cesàro summability \(\vert C_{\lambda,\mu} \vert _{k}\) of Das (Proc. Camb. Philol. Soc. 67:321–326, 1970), compute its \(\beta\)-dual, give some algebraic and topological properties, and characterize some matrix operators defined on that space. So we generalize some results of Bosanquet (J. Lond. Math. Soc. 20:39–48, 1945), Flett (Proc. Lond. Math. Soc. 7:113–141, 1957), Mehdi (Proc. Lond. Math. Soc. (3)10:180–199, 1960), Mazhar (Tohoku Math. J. 23:433–451, 1971), Orhan and Sar?göl (Rocky Mt. J. Math. 23(3):1091–1097, 1993) and Sar?göl (Commun. Math. Appl. 7(1):11–22, 2016; Math. Comput. Model. 55:1763–1769, 2012).  相似文献   

10.
The aim of this note is to prove, in the spirit of a rigidity result for isolated singularities of Schlessinger see Schlessinger (Invent Math 14:17–26, 1971) or also Kleiman and Landolfi (Compositio Math 23:407–434, 1971), a variant of a rigidity criterion for arbitrary singularities (Theorem 2.1 below). The proof of this result does not use Schlessinger’s Deformation Theory [Schlessinger (Trans Am Math Soc 130:208–222, 1968) and Schlessinger (Invent Math 14:17–26, 1971)]. Instead it makes use of Local Grothendieck-Lefschetz Theory, see (Grothendieck 1968, Éxposé 9, Proposition 1.4, page 106) and a Lemma of Zariski, see (Zariski, Am J Math 87:507–536, 1965, Lemma 4, page 526). I hope that this proof, although works only in characteristic zero, might also have some interest in its own.  相似文献   

11.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

12.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

13.
Berkovich (Invent. Math. 125(2):367–390, 1996), Fujiwara (Duke Math. J. 80(1):15–57, 1995) and Huber (J. Algebraic Geom. 7(2):359–403, 1998) have proved that the fiber of the vanishing cycles at a point of the special fiber depends only on the formal completion at this point. We refine this result and prove the invariance under formal completion of the perverse monodromy filtration on the fiber of vanishing cycles. This result is used in an essential way by Boyer (Invent. Math. doi: 10.1007/s00222-009-0183-9, 2009).  相似文献   

14.
In this paper, we apply value function iteration to solve a multi-period portfolio choice problem. Our problem uses power utility preferences and a vector autoregressive process for the return of a single risky asset. In contrast to the observation in van Binsbergen and Brandt (Comput Econ 29:355–368, 2007) that value function iteration produces inaccurate results, we achieve highly accurate solutions through refining the conventional value function iteration by two innovative ingredients: (1) approximating certainty equivalents of value functions by regression, and (2) taking certainty equivalent transformation on expected value functions in optimization. We illustrate that the new approach offers more accurate results than those exclusively designed for improvement through a Taylor series expansion in Garlappi and Skoulakis (Comput Econ 33:193–207, 2009). In particular, both van Binsbergen and Brandt (Comput Econ 29:355–368, 2007) and Garlappi and Skoulakis (Comput Econ 33:193–207, 2009) comparing their lower bounds with other lower bounds, we more objectively assess our lower bounds by comparing with upper bounds. Negligible gaps between our lower and upper bounds across various parameter sets indicate our proposed lower bound strategy is close to optimal.  相似文献   

15.
We prove a sharp pinching estimate for immersed mean convex solutions of mean curvature flow which unifies and improves all previously known pinching estimates, including the umbilic estimate of Huisken (J Differ Geom 20(1):237–266, 1984), the convexity estimates of Huisken–Sinestrari (Acta Math 183(1):45–70, 1999) and the cylindrical estimate of Huisken–Sinestrari (Invent Math 175(1):137–221, 2009; see also Andrews and Langford in Anal PDE 7(5):1091–1107, 2014; Huisken and Sinestrari in J Differ Geom 101(2):267–287, 2015). Namely, we show that the curvature of the solution pinches onto the convex cone generated by the curvatures of any shrinking cylinder solutions admitted by the initial data. For example, if the initial data is \((m+1)\)-convex, then the curvature of the solution pinches onto the convex hull of the curvatures of the shrinking cylinders \(\mathbb {R}^m\times S^{n-m}_{\sqrt{2(n-m)(1-t)}}\), \(t<1\). In particular, this yields a sharp estimate for the largest principal curvature, which we use to obtain a new proof of a sharp estimate for the inscribed curvature for embedded solutions (Brendle in Invent Math 202(1):217–237, 2015; Haslhofer and Kleiner in Int Math Res Not 15:6558–6561, 2015; Langford in Proc Am Math Soc 143(12):5395–5398, 2015). Making use of a recent idea of Huisken–Sinestrari (2015), we then obtain a series of sharp estimates for ancient solutions. In particular, we obtain a convexity estimate for ancient solutions which allows us to strengthen recent characterizations of the shrinking sphere due to Huisken–Sinestrari (2015) and Haslhofer–Hershkovits (Commun Anal Geom 24(3):593–604, 2016).  相似文献   

16.
We improve the Sobolev-type embeddings due to Gagliardo (Ric Mat 7:102–137, 1958) and Nirenberg (Ann Sc Norm Sup Pisa 13:115–162, 1959) in the setting of rearrangement invariant (r.i.) spaces. In particular, we concentrate on seeking the optimal domains and the optimal ranges for these embeddings between r.i. spaces and mixed norm spaces. As a consequence, we prove that the classical estimate for the standard Sobolev space \(W^{1}L^{p}\) by Poornima (Bull Sci Math 107(3):253–259,  1983), O’Neil (Duke Math J 30:129–142,  1963) and Peetre (Ann Inst Fourier 16(1):279–317,  1966) (\(1 \le p < n\)), and by Hansson (Math Scand 45(1):77–102,  1979, Brezis and Wainger (Commun Partial Differ Equ 5(7):773–789,  1980) and Maz’ya (Sobolev spaces,  1985) (\(p=n\)) can be further strengthened by considering mixed norms on the target spaces.  相似文献   

17.
This note continues our previous work on special secant defective (specifically, conic connected and local quadratic entry locus) and dual defective manifolds. These are now well understood, except for the prime Fano ones. Here we add a few remarks on this case, completing the results in our papers (Russo in Math Ann 344:597–617, 2009; Ionescu and Russo in Compos Math 144:949–962, 2008; Ionescu and Russo in J Reine Angew Math 644:145–157, 2010; Ionescu and Russo in Am J Math 135:349–360, 2013; Ionescu and Russo in Math Res Lett 21:1137–1154, 2014); see also the recent book (Russo, On the Geometry of Some Special Projective Varieties, Lecture Notes of the Unione Matematica Italiana, Springer, 2016).  相似文献   

18.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

19.
In a series of papers (J Phys A 44:365304, 2011; Complex Anal Oper Theory 7:1299–1310, 2013; J Math Pures Appl 99:165–173, 2013; J Math Pures Appl 103:522–534, 2015), we have investigated some mathematical properties of superoscillating sequences in one variable, and their persistence in time. In this paper we study the notion of superoscillation in several variables and we show how to construct examples of sequences that exhibit this property.  相似文献   

20.
We construct an Euler system of generalized Heegner cycles to bound the Selmer group associated to a modular form and an algebraic Hecke character. The main argument is based on Kolyvagin’s method adapted by Bertolini and Darmon (J Reine Angew Math 412:63–74, 1990) and by Neková? (Invent Math 107(1):99–125, 1992), while the key object of the Euler system, the generalized Heegner cycles were first considered by Bertolini et al. (Duke Math J 162(6):1033–1148, 2013).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号