首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PtBi-modified Pt/C catalyst was prepared by liquid chemical reduction method. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) were used to characterize PtBi-modified Pt/C catalyst. The electrochemical behaviors for the 2-propanol electrooxidation reaction in alkaline medium were measured by cyclic voltammetry, line sweep voltammetry, and electrochemical impedance spectra (EIS). The results showed that the prepared PtBi is ordered intermediate compound. Compared with the spectrum obtained from Pt/C catalyst, the XPS peak of PtBi-modified Pt/C catalyst is obviously moving toward the low Pt 4f biding energy. The Bi0 and Bi2O3 coexist on the surface of PtBi/C catalyst. In alkaline medium, the electrochemical activity of 2-propanol electrooxidation of PtBi/C catalyst is higher than that of commercial Pt/C catalyst. EIS result shows that the reaction mechanism of 2-propanol electrooxidation for both catalysts is similar.  相似文献   

2.
In this study, poly(P-phenylenediamine/ZnO) (PpPD/ZnO) nanocomposite (NC) under ultrasonic conditions was synthesized and characterized. The presence of zinc oxide nanoparticles changed the morphology of PpPD considerably as confirmed by SEM observations. Hydrazine electrooxidation at novel modified carbon paste electrodes (CPE) with supported NC was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) techniques. Obtained results showed that the NC increases the surface catalytic activity of CPE toward hydrazine electrooxidation. The electrocatalytic current density increased linearly with hydrazine concentration, and the detection limit and sensitivity are determined to be 24 μM and 0.172 mA cm?2 mM?1, respectively. As revealed by the EIS measurements, the increased conductivity and decreased R ct are owing to the presence of ZnO NPs in the PpPD matrix. The CA results indicated that hydrazine electrooxidation results in higher steady-state current density on CPE/PpDP/ZnO electrode system compared to the CPE/PpDP and CPE electrodes.  相似文献   

3.
Yang Peng  Junwei Di 《Ionics》2017,23(5):1203-1208
This paper describes the synthesis of nanoporous AuPt nanoparticles (np-AuPt NPs) by galvanic replacement reactions that involve large-sized silver nanoparticles (Ag NPs) electrodeposited upon an indium tin oxide (ITO) film glass as a sacrificial template. Compared to a previous synthetic route based on the formation and dealloying of Ag/Au alloy nanoparticles, this method can easily fabricate nanoporous Au nanoparticles (np-Au NPs), as well as nanoporous AuPt nanoparticles. Structural characterization indicated that the products had a particle size of ~170 nm with a ligament size of tens of nanometers. The fabricated np-Au NPs/ITO and np-AuPt NPs/ITO electrode were also tested and compared for the oxidation of hydrogen peroxide in a phosphate buffer solution (pH 7.0). The np-AuPt NPs/ITO electrode showed a much higher electrocatalytic efficiency and detection sensitivity to hydrogen peroxide than the np-Au NPs/ITO electrode.  相似文献   

4.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

5.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

6.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

7.
Te nanorods (NRs) were prepared from TeO2 in the presence of hydrazine hydrate without using any surfactants under ambient conditions. Te NRs were then used as sacrificial templates to prepare Pt@Te NRs by spontaneous redox galvanic replacement between Te and Pt ions. The as-synthesized Pt@Te NRs exhibit a strong catalytic activity for the colorimetric detection of H2O2 using 2, 2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as an indicator.  相似文献   

8.
The Ni-Ce-Co-O film on nickel foam was prepared by thermal decomposition of acetates. The electrochemical activity of the film was affected by the temperature of thermal decomposition. Cerium ions introduced into the oxide film could increase the surface area and improve the oxygen evolution reaction (OER) activity of the electrode. Compared with thermal decomposition of nitrates, the OER activity of the film prepared with acetates was higher. When the nickel foam/Ni-Ce-Co-O film electrode prepared with acetates was used as the anode, in 30% KOH solution (88 ± 2 °C) at the current density of 4000 A/m2, the cell voltage was 250 mV lower than that of the nickel foam anode. Furthermore, the film electrode exhibited good stability.  相似文献   

9.
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005–982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM−1 cm−2 with excellent precision and accuracy towards the sensing of nitrofurantoin.  相似文献   

10.
以电化学原位时间分辨FTIR反射光谱和循环伏安方法研究甲酸在不同Sb覆盖度修饰的Pt(100)单晶电极上的氧化。发现Sbad的修饰抑制了甲酸的解离吸附,使反应经活性中间体直接氧化至CO2。电化学和红外光谱数据表明,θSb=0.24的Pt(100)/Sb电极具有最高的电催化活性。  相似文献   

11.
Ryutaro Souda 《Surface science》2006,600(16):3135-3140
The glass-liquid transition of the amorphous HCOOH films and the reorganization of hydrogen-bonds of HCOOH during interactions with adsorbed D2O and Xe have been investigated on the basis of temperature-programmed TOF-SIMS and TPD. On the as-deposited HCOOH film at 15 K, the physisorbed Xe atom permeates through pores and is trapped in the bulk during pore collapse upon heating. The hydrogen bonds of the HCOOH film are persistent up to 125 K as revealed from the interaction with the adsorbed D2O molecules. The translational molecular diffusion commences at 125 K and dewetting of the HCOOH film follows at 150 K. The Xe atom incorporated in the bulk of the HCOOH film desorbs at 150 K concomitantly with dewetting of the film. These phenomena can be explained in terms of the glass-liquid transition of formic acid and the slow evolution of fluidity in the supercooled liquid phase.  相似文献   

12.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Ag films on tinning glass substrates were fabricated by modified silver-mirror (Tollen’s) reaction with the advantage of low-cost, simple and quick fabrication process. The obtained Ag films were served as sacrificial materials for preparation of Ag/Au nanocomposite films by immersing in a chlorauric acid (HAuCl4) solution at room temperature. After a short time of galvanic replacement reaction, Ag/Au bimetallic nanostructures were synthesized with “concave” structures. The morphology, properties and composition of the Ag and Ag/Au nanocomposite films were analyzed by using scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDS) and surface enhanced Raman scattering (SERS). SEM images displayed that the large area of Ag film and Ag/Au bimetallic nanostructures experienced structural evolution process during galvanic reaction. The UV-Vis spectra showed the absorbencies characterization of Ag film and Ag/Au nanocomposite films. SERS measurements using methylene blue as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films. The SERS enhancement ability of Ag/Au bimetallic films was dependent on the immersion time for galvanic replacement reaction.  相似文献   

14.
王伟宇  胡涵  徐君  邓风 《波谱学杂志》2018,35(3):269-279
本文通过多相催化-仲氢诱导超极化(HET-PHIP)核磁共振(NMR)技术研究了Pd-Cu/SiO2双金属催化剂上丙炔选择性加氢反应.首先利用等体积浸渍法和连续浸渍法合成了一系列不同Pd/Cu比例和形貌的Pd-Cu/SiO2双金属催化剂.通过ALTADENA(Adiabatic Longitudinal Transport After Dissociation Engenders Net Alignment)方法发现,催化剂的Pd/Cu比例和形貌均对PHIP的极化效率有较大影响.随着Pd-Cu双金属催化剂中Pd比例的增大,PHIP极化效率降低,同时反应活性增强.在同Pd/Cu比例下,相对于等体积浸渍法,连续浸渍法制备的层叠形貌催化剂具有较弱的极化效率以及较强的催化活性,这是由于催化剂表面暴露出的Pd数量增多,导致催化活性增强;同时单个Pd集簇表面积增大,使得氢原子移动范围扩大,从而造成极化效率降低.  相似文献   

15.
Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described.  相似文献   

16.
In this work, we describe a novel facile method to prepare long one-dimensional hybrid nanofibers by using hydrated bacterial cellulose nanofibers (BCF) as template. Palladium-copper nanoparticles were prepared in BCF by immersing BCF in a mixture solution of PdCl2 and CuCl2 in water and followed reduction of absorbed metallic ion inside of BCF to the metallic Pd-Cu nanoparticles using potassium borohydride. The bare BCF and the composites were characterized by a range of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results reveal that the Pd-Cu nanoparticles were homogeneously precipitated on the BCF surface. The Pd-Cu/BCF was used as a catalyst for water denitrification, which showed that it has high catalytic activity.  相似文献   

17.
采用调变的多元醇法制备了高分散碳载PtSn催化剂(PtSn/C),XRD测试结果表明金属粒子的平均粒径为2.2 nm,略小于Pt/C催化剂,而晶格参数相对增大。通过电化学原位时间分辨红外光谱研究了乙醇在PtSn/C催化剂上的吸附和氧化过程,表明线性吸附态CO(COL)是主要的乙醇解离吸附物种,导致催化剂中毒,阻止反应继续进行;当电位增大到0.3 V时,出现了乙醛和乙酸的红外吸收峰,作为乙醇解离吸附的竞争反应,乙醛和乙酸的生成有效抑制了催化剂中毒,随着电位的增大和时间的延长,生成乙酸的选择性增大;电位进一步增大至0.4 V时有微弱CO2吸收峰出现,是乙醇电氧化的最终产物,主要来自于COL的氧化消耗。根据实验结果讨论了PtSn/C催化剂上乙醇的电催化氧化机理。  相似文献   

18.
Nanoball-structured ferromagnetic zinc ferrite nanocrystals (ZnFe2O4 NPs) entrapped with graphitic-carbon nitride (g-C3N4) was produced via straightforward and facile sonochemical synthetical technique (titanium probe; 100 W/cm2 and 50 KHz). The morphological (SEM), elemental (EDS), diffraction (XRD), XPS, and electrochemical studies (CV) have been carry out to verify the nanostructure and shape of the materials. The ZnFe2O4 NPs/g-C3N4 electrode (GCE) was constructed which displayed outstanding electrochemical ability towards toxic 4-nitrophenol (NTP). A sensitive, selective, reproducible, and durable electrochemical NTP sensor was developed by ZnFe2O4 NPs/g-C3N4 modified electrode. The modified sensor exhibited a high sensitivity and 4.17 nanomolars of LOD. It’s greater than the LOD of previously reported NTP modified sensors. The real-time experiments of the modified electrochemical (ZnFe2O4 NPs/g-C3N4 electrode) sensor were successfully explained in various water (river and drinking) samples and its showed high standard recoveries. Therefore, sonochemical synthetical method and fabrication of modified electrode were developed this work based on environmental analysis of NTP sensor.  相似文献   

19.
Cu–Ni fcc alloy nanoparticles (NPs) of tunable atomic ratios were generated in SiO2 films. The films were prepared using the Cu(NO3)2 and Ni(NO3)2 co-doped inorganic–organic hybrid silica sols by single dipping. Transparent, crack-free, glassy SiO2 films of 310 ± 10 nm in thickness embedded with high mol percent of Cu–Ni alloy NPs were yielded after annealing at 750 °C in 10% H2-90% Ar atmosphere. Nominal compositions of the films were 20 mol% (Cu–Ni)-80 mol% SiO2. Optical spectral study of the heat-treated films showed disappearance of Cu plasmon bands due to Cu–Ni alloy formation. Grazing incidence X-ray diffraction (GIXRD) studies revealed the formation of Cu–Ni alloy (2:1, 1:1 and 1:2) NPs inside the SiO2 film. GIXRD showed a systematic shifting of the diffraction peaks with respect to the fcc Cu–Ni alloy composition, maintaining the nominal ratios. Transmission electron microscopy (TEM) studies of the representative Cu0.5Ni0.5-doped film showed existence of homogeneously dispersed Cu–Ni alloy NPs of average size 6.35 nm inside the SiO2 matrix. The energy dispersive X-ray scattering (EDX) analysis of the individual NPs using the nano-probe (scanning TEM mode) confirmed the presence of both the Cu and Ni with the desired atomic ratio.  相似文献   

20.
用近空间升华法制备了CdTe多晶薄膜,用硝酸-磷酸(NP)混合液对薄膜表面进行了腐蚀.经SEM观测,腐蚀后的CdTe薄膜晶界变宽,XRD测试发现,经NP腐蚀后,在CdTe薄膜表面生成了一层高电导的富Te层.在腐蚀后的CdTe薄膜上分别制备了Cu,Cu/ZnTe:Cu,ZnTe:Cu,ZnTe/ZnTe:Cu四种背接触层,比较了它们对太阳电池性能的影响.结果表明,用ZnTe/ZnTe:Cu复合层作为背接触层的效果较好,获得了面积为0.5cm2,转换效率为13.38%的CdTe多晶薄膜太 关键词: 硝磷酸腐蚀 背接触层 CdTe太阳电池  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号