首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2-reduced graphene oxide (RGO) composite was synthesized via a sol-gel process and investigated as an anode material for sodium-ion batteries (SIBs). A remarkable improvement in sodium ion storage with a reversible capacity of 227 mAh g?1 after 50 cycles at 50 mA g?1 is achieved, compared to that (33 mAh g?1) for TiO2. The enhanced electrochemical performance of TiO2-RGO composite is attributed to the larger specific surface area and better electrical conductivity of TiO2-RGO composite. The excellent performance of TiO2-RGO composite enables it a potential electrode material for SIBs.  相似文献   

2.
Jinxue Guo  Fenfen Li  Jing Sui  Haifeng Zhu  Xiao Zhang 《Ionics》2014,20(11):1635-1639
Three-dimensional Co3O4-graphene frameworks (3D-CGFs) are prepared with a one-pot hydrothermal method. Co3O4 particles are in situ anchored on graphene sheets, and the resulting composite self-assembles into 3D architecture during the hydrothermal treatment. Scanning electron microscope, transmission electron microscope, powder X-ray powder diffraction, and Raman spectroscopy are employed to characterize the sample. When tested as anode materials for lithium-ion batteries, 3D-CGFs demonstrate remarkable electrochemical lithium storage properties, such as large and stable reversible capacity (>530 mAh g?1 at 500 mA g?1 over 300 cycles), good capacity retention (88 % retention after 300 cycles at 500 mA g?1 compared with the 4th cycle), excellent high-rate performance (515 mAh g?1 at 1 A g?1), making it a promising candidate for high-performance anode materials, especially for high-rate lithium-ion batteries.  相似文献   

3.
Hard carbon is considered as the most promising anode material for practical sodium ion batteries. Herein, we report biomass-derived hard carbon made from corn straw piths through a simple carbonization process. X-ray diffraction patterns and Raman spectra elucidated highly disordered structures, and high-resolution transmission electron microscopy confirmed that the hard carbons have many local ordered structures containing turbostratic nanodomains and more nanovoids surround the turbostratic nanodomains. The electrochemical performances of the hard carbons were systematically investigated in sodium ion batteries. By optimizing the carbonization temperature, the sample carbonized at 1400 °C (HC1400) exhibited high reversible capacity of 310 mAh g?1 and good cycling stability; the capacity can still retain 274 mAh g?1 after 100 cycles. More importantly, HC1400 can deliver reversible capacity of 206 mAh g?1 with 79% retention rate after 700 cycles measured at a current density of 200 mA g?1, which is much better than those in most previous reports. This study provides a way to develop inexpensive, renewable, and recyclable materials from biomasses towards next-generation energy storage applications.  相似文献   

4.
Porous carbon nanosheets (PCNSs), porous carbon nanofibers (PCNFs), and flowerlike porous carbon microspheres (FPCMs) were successfully synthesized through a carbonization method combined with a simple acid pickling treatment using calcium citrate as the precursor. The as-prepared products show uniform morphologies, in which the FPCMs are self-assembled from PCNSs. As anodes of lithium-ion (Li-ion) batteries, these carbon materials deliver a stable reversible capacity above 515 mAh g?1 after 50 cycles at 100 mA g?1. Compared with PCNSs and PCNFs, FPCMs demonstrate preferable rate capability (378 mAh g?1 at 1 A g?1) and cyclability (643 mAh g?1 at 100 mA g?1). These results suggest that an appropriate select of morphology and structure will significantly improve the lithium storage capacity. The study also indicates that the novel shape-controlled porous carbon materials have potential applications as electrode materials in electronic devices.  相似文献   

5.
Hierarchical Na2FeP2O7 spheres with nanoparticles were successfully fabricated by a facile spray drying method. A relatively low drying temperature was introduced in order to form a carbon layer on the surface. As a cathode material for sodium-ion batteries, it delivered a reversible capacity of 84.4 mAh g?1 at 0.1 C and showed excellent cycling and rate performance (64.7 mAh g?1 at 5 C). Furthermore, a full sodium battery was fabricated using SP-Na2FeP2O7 as the cathode and hard carbon as the anode, suffering almost no capacity loss after 400 cycles at 1 C. Due to its superior electrochemical property and the low materials cost, Na2FeP2O7 is becoming a promising cathode material for large-scale energy storage systems.  相似文献   

6.
SiO2 is one of the most promising lithium storage materials for lithium-ion batteries anodes due to its low cost, good environmental compatibility, low working voltage, and high-specific capacity. In this work, the desert sands, which are rich in SiO2, are investigated as the anode material for lithium-ion batteries. The electrochemical activation, lithium storage capacity, and cycle properties are highly dependent on the particle size distribution of sands. As the average particle sizes of sands gradually decrease, the reversible lithium storage capacity increases from 137 mAh g?1 (several microns) to 492 mAh g?1 (several submicrons). The 72 h-milled sands (average particle size: ~1 μm) deliver a stable lithium storage capacity of ~400 mAh g?1 over 400 cycles with the capacity retention as high as 95%. The reason for the electrochemical activation, lithium storage capacity, and cycle properties of sands associated with their particle size distribution is also discussed.  相似文献   

7.
Nanoporous CuO/Cu composites with a continuous channel structure were fabricated through a corroding Cu-Al alloy process. The width of the continuous channels was about 20~50 nm. Nanoporous structure could effectively sustain the volume expansion during the Na+ insertion/extraction process and shorten the Na+ diffusion length as well, which thus helps improve the Na+ storage performance. Moreover, the nanoporous structure can improve the contact area between the electrolyte and the electrode, leading to an increment in the number of Na+ insertion/extraction sites. When used as the anode for sodium-ion batteries, the CuO/Cu exhibited an initial capacity of ~?580 mAh g?1, and the capacity is maintained at ~?200 mAh g?1 after 200 cycles at a current density of 500 mA g?1.  相似文献   

8.
Dan Zhou  Li-Zhen Fan 《Ionics》2018,24(10):3065-3073
Novel three-dimensional porous carbon network (3D-PC) anode was developed by a facile in situ NaCl-template method utilizing citric acid as carbon source. The synthesis process involves the dissolution of NaCl and citric acid in deionized water, citric acid coated on NaCl template during freeze-drying process, carbonization of the composites, and removal of the template with water. The resultant 3D-PC presents high electrical conductivity, large specific surface area, sufficient active sites, large interlayer distance, and high mechanical flexibility, which are contributed to the efficient Na-storage. Therefore, the 3D-PC anode displays enhanced rate performance of 101 mAh g?1 at 1000 mA g?1 and extremely long cycle life of 138 mAh g?1 after 2000 cycles at 200 mA g?1. The unique synthesis strategy coupled with the excellent Na-storage performance ensures 3D-PC a promising anode material for low-cost sodium-ion batteries.  相似文献   

9.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

10.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

11.
This work presents a feasible route for the facile synthesis of three-dimensional (3D) hierarchical mesocarbon microbead (MCMB) as anodes for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). The MCMB is oxidized by modified hummers method, and then the precursor is treated by hydrogen reduction to form the HMCMB. The HMCMB with graphene-like architecture has high specific surface, sufficient pore volume, and increased interlayer spacing, which can provide more active insertion/extraction sites and reduce the Li+/Na+ diffusion resistance. When employed as anode materials for LIBs and SIBs, HMCMB anodes exhibit improved lithium and sodium storage capability. The HMCMB delivers a higher reversible capacity (471.1 and 177.5 mAh g?1 at 100 mA g?1 after 100 cycles) and a good rate performance (250 and 121 mAh g?1 even at 1000 mA g?1) for LIBs and SIBs, respectively.  相似文献   

12.
Highly dispersed ZnO nanoparticles were prepared by a versatile and scalable sol-gel synthetic technique. High-resolution transmission electronic microscopy (HRTEM) showed that the as-prepared ZnO nanoparticles are spherical in shape and exhibit a uniform particle size distribution with the average size of about 7 nm. Electrochemical properties of the resulting ZnO were evaluated by galvanostatic discharge/charge cycling as anode for lithium-ion battery. A reversible capacity of 1652 mAh g?1 was delivered at the initial cycle and a capacity of 318 mAh g?1 was remained after 100 cycles. Furthermore, the system could deliver a reversible capacity of 229 mAh g?1 even at a high current density of 1.5 C. This outstanding electrochemical performance could be attributed to the nano-sized features of highly dispersed ZnO particles allowing for the better accommodation of large strains caused by particle expansion/shrinkage along with providing shorter diffusion paths for Li+ ions upon insertion/deinsertion.  相似文献   

13.
A distinctive structure of carbon materials for Li-ion batteries is proposed for the preparation of red phosphorus-carbon composites. The slit-shaped porous carbon is observed with aggregation of plate-like particles, whose isotherm belongs to the H3 of type IV. The density functional theory (DFT) method reveals the presence of micro-mesopores in the 0.5–5 nm size range. The unique size distribution plays an important role in adsorbing phosphorus and electrochemical performance. The phosphorus-slit-shaped porous carbon composite shows initial capacity of 2588 mAh g?1, reversible capacity of 1359 mAh g?1 at a current density of 100 mA g?1. It shows an excellent coulombic efficiency of ~99 % after 50 cycles.  相似文献   

14.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

15.
A binder-free three-dimensional porous interconnected graphene (a-3DrGO@NF) was centrifugally constructed and KOH-activated at 800 °C, leading a mechanically strong and pore-developed anode candidate for lithium ion batteries (LIBs). The unique approach of the integration of the mechanical construction and thermal activation demonstrated favorable frameworks to facilitate the stable and fast migrations of both ion and electron during the galvanostatic charge/discharge process, thus significantly improving its durability and electrochemical performance compared to those without the activated and thermal treatment. The a-3DrGO@NF LIBs showed a highly reversible capacity of 1250 mAh g?1 at a current density of 0.1 A g?1 after 50 cycles without degradation relative to the first cycle. More importantly, the a-3DrGO@NF LIBs exhibited excellent large current discharge property and cyclic stability of 965 mAh g?1 in its first cycle and 545 mAh g?1 after 150 cycles at a current density of 4 A g?1. Furthermore, it can be quickly charged and discharged in a very short time of 92 s together with high-rate capability of 256 mAh g?1 after 200 cycles at 10 A g?1. At both lower and higher its current density as to 10 A g?1, the coulombic efficiency was close to 100% and showed the reliability of a-3DrGO@NF LIBs.  相似文献   

16.
Red phosphorus (RP) is considered to be one of the promising anode materials for lithium-ion batteries (LIBs) on account of its high theoretical capacity (2596 mAh g?1), abundant resources, and environmental friendliness. However, the intrinsic insulating nature and large volume change during lithium insertion/extraction process lead to drastic capacity loss upon cycling. Recently, great attention has been devoted to constructing P-based composites via mixing with carbon materials. Here, a novel P/C composite, in which red P nanoparticles were homogeneously distributed in cigarette filter-derived porous carbon (CPC), was fabricated by vaporization-condensation method. Due to the unique characteristics of porous carbon, including high specific area, good conductivity, and rich internal porous structure, CPC obtained by means of heat treatment that serves as conductive matrix to load red P could be of great benefits, which can not only improve the overall electrical conductivity but also mitigate the volume expansion issues. As a result, the RP/CPC composite as an anode material for LIBs delivers a good cycling stability (500 mAh g?1 at 100 mA g?1 with a high Coulombic efficiency above 99% after 50 cycles) and rate capability (355 mAh g?1 even at 1000 mA g?1).  相似文献   

17.
Ni foam and carbon fiber cloth were tested as three-dimensional (3D) current collectors for a sulfur/polypyrrole composite cathode in lithium batteries. The cell with the carbon fiber current collector has exhibited remarkably enhanced electrochemical performance compared with its Ni foam counterpart, delivering a high initial capacity of 1,278 mAh g?1 and maintaining a discharge capacity at 810 mAh g?1 after 40 cycles at 0.06 C. Furthermore, the carbon fiber-based cell demonstrated a better rate capability and delivered a highly reversible discharge capacity of 397 mAh g?1 after 50 cycles at 0.5 C, representing an increase of 194 mAh g?1 compared to the Ni foam counterpart. The electrochemical property investigations along with scanning electron microscope studies have revealed that the carbon fiber current collector possesses a three-dimensional network structure, provides an effective electron conduction path, and minimizes the loss of electrical contact within the deposited cathode material during cycling. These results indicate that the carbon fiber cloth can be used as a promising, effective, and inexpensive current collector for Li/S batteries.  相似文献   

18.
Guoqiang Liu  Lei Wen  Yue Li  Yulong Kou 《Ionics》2015,21(4):1011-1016
The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g?1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g?1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.  相似文献   

19.
Titanium dioxide (TiO2)-based materials have been well studied because of the high safety and excellent cycling performance when employed as anode materials for lithium ion batteries (LIBs), whereas, the relatively low theoretical capacity (only 335 mAh g?1) and serious kinetic problems such as poor electrical conductivity (~?10?13S cm?1) and low lithium diffusion coefficient (~?10?9 to 10?13 cm2 s?1) hinder the development of the TiO2-based anode materials. To overcome these drawbacks, we present a facile strategy to synthesize N/S dual-doping carbon framework anchored with TiO2 nanoparticles (NSC@TiO2) as LIBs anode. Typically, TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S dual doping feature, which is produced by carbonization and KOH activation process. The as-obtained NSC@TiO2 electrode exhibits a high specific capacity of 250 mAh g?1 with a coulombic efficiency of 99% after 500 cycles at 200 mA g?1 and excellent rate performance, indicating its promising as anode material for LIBs.  相似文献   

20.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号