首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study, we have described the synthesis and the physical properties of poly(aniline-co-m-bromoaniline) conducting copolymers. The copolymers of different composition are essentially obtained by varying the molar feed ratio of the two monomers. The higher solubility of the copolymers could be procured as compared to polyaniline (PA) in different solvents. The electrical conductivity has been studied by two-probe method; at room temperature, the conductivity of the copolymer decreases upon increasing the molar ratio of m-bromoaniline monomer. The introduction of bromine (–Br) group reduces the degree of conjugation in the polymer chain. Thus, conduction of electrons is prohibited along the conjugated system. In the thermogravimetric analysis (TGA), a three-stage decomposition of the copolymer has been observed. The copolymers of poly(aniline-co-m-bromoaniline) are thermally stable at high temperature. The composition of the copolymer has been confirmed from the binding energies of C–C, C–N, and C–Br in the XPS study.  相似文献   

2.
A series of moderately conducting and soluble copolymers of poly(aniline-co-o-bromoaniline) (PA-co-o-BrA) having different compositions was obtained by in the situ copolymerization method using different concentrations of monomer units of aniline and o-bromoaniline in the feed. The physio-chemical properties of the copolymers have been studied with sophisticated instrumental techniques. The electrochemical study of the copolymers was conducted by cyclic voltammetry. The band gap of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the copolymers was evaluated by UV-vis spectroscopy. The morphological study was conducted by scanning electron microscopy and transmission electron microscopy at high magnification which shows non-uniform tubular to globular morphology of the copolymers. Surface profiles of the polymers were studied by AFM analyses, and it has confirmed the smooth surface of the copolymers while the homopolymers possesses non-uniform surfaces. The particle size distribution curve indicates that the particle sizes vary in the range of 5 to 9000 nm, and a small fraction of particles possess a size in the range of 5–10 nm.  相似文献   

3.
The difference of vector and axial-vector charged current correlators is analyzed by means of QCD sum rules. The contribution of 10-dimensional 4-quark condensates is calculated and its value is estimated within the framework of the factorization hypothesis. It is compared to the result obtained from an operator fit of Borel sum rules in the complex q 2-plane, calculated from experimental data on hadronic -decays. This fit gives accurate values of the light quark condensate and the quark-gluon mixed condensate. The size of the high-order operators and the convergence of the operator series are discussed.Received: 10 May 2004, Revised: 7 September 2004, Published online: 18 November 2004  相似文献   

4.
The host attractive properties of supramolecular coordination polymers of the type 3 _\infty^3 [(R3Sn)3FeIII(CN)6], where R = methyl (I), n-butyl (II), and phenyl (III), afford the ability to be used as effective oxidizing reagents for phenol and o-aminophenol forming new host-guest supramolecular coordination polymers. Phenol was oxidized to 1,4-benzoquinone while o-aminophenol was oxidized to poly-o-aminophenol by the polymers I and II and to 2-aminophenoxazin-3-one by the polymer III. The oxidation products were investigated by methods of spectroscopy and high-performance liquid chromatography. The redox reactions were characterized by first-order kinetics. Moreover, mechanisms of the oxidation processes of phenol and o-aminophenol have been proposed.  相似文献   

5.
The critical current I c of S-(FN)-S Josephson structures has been calculated as a function of the distance L between superconducting (S) electrodes using the Usadel quasiclassical equations for the case of specifying the supercurrent in the direction parallel to the interface between the ferromagnetic (F) and normal (N) films of the composite weak-link region. It has been shown that, owing to the interaction between F and N films, both the typical decrease scale I c(L) and the period of the critical current oscillations can be much larger than the respective quantities for the SFS junctions. The conditions have been determined under which these lengths are on the order of the effective depth ζN of superconductivity penetration to a normal metal.  相似文献   

6.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

7.
A reproducible methodology is described for the synthesis, by following the double emulsion/solvent evaporation technique, of magnetic nanocomposites (average diameter ≈ 135 nm) consisting of maghemite nuclei and a biodegradable poly(d,l-lactide-co-glycolide) matrix. The heterogeneous structure of the nanoparticles can confer them the responsiveness to magnetic gradients, giving both the possibility of their use as a drug delivery system and adequate heating characteristics for a hyperthermia effect. The physical chemistry of the nanocomposites was extensively characterized, this establishing that their surface properties were similar to that of pure poly(d,l-lactide-co-glycolide). From an electrokinetic point of view, zeta potential determinations (as a function of the ionic strength, and pH) pointed out that the nanocomposites were almost indistinguishable from the copolymer. The surface thermodynamic analysis agreed with the electrophoretic one in suggesting that the coverage of the magnetic nuclei was complete, since the hydrophilic nature of maghemite was modified and the nanoparticles turned into hydrophobic, just like the copolymer, when they were embedded into poly(d,l-lactide-co-glycolide). The magnetic behaviours of the composite nanoparticles were also checked. Their heating properties were studied in vitro in a high-frequency alternating gradient of magnetic field: a stable maximum temperature of 47 °C was satisfactorily achieved within 45 min. Blood compatibility of the nanocomposites was also defined in vitro. To our knowledge, this is the first time that such kind of magnetic-sensitive nanoformulation with very promising characteristics (e.g. blood compatibility, magnetic drug targeting capabilities, and hyperthermia) has been developed for therapeutic purposes.  相似文献   

8.
In a recent paper (Sharif and Shamir in Class. Quantum Grav. 26:235020, 2009), we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f (R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.  相似文献   

9.
We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.  相似文献   

10.
From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds. The text was submitted by the authors in English.  相似文献   

11.
The well-known energy problem is discussed in f (R) theory of gravity. We use the generalized Landau–Lifshitz energy–momentum complex in the framework of metric f (R) gravity to evaluate the energy density of plane symmetric solutions for some general f (R) models. In particular, this quantity is found for some popular choices of f (R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.  相似文献   

12.
We study the f (R)-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordström-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the f (R)-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm the presence of these solutions in a numerical way.  相似文献   

13.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

14.
In this paper the f(R) global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some particular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopole’s charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopole’s core is shaped by a class of spacetime metrics which includes the ones analyzed here. In order to assess the gravitational properties of this system, we analyze the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.  相似文献   

15.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

16.
Reaction of amidrazones 1a–1i with (1,5-dihydro-3-methyl-5-oxo-1-phenyl-4H-pyrazol-4-ylidene)propanedinitrile (2) in ethyl acetate solution in one-step reaction led to the formation of unprecedented pyrazolo[4,3-c][1,2,4]triazino[4,5-a]quinolin-4(5H)-ones 3a–3g along with pyrazolo[4,3-c][1,2,4]triazino[4,5-a]quinolin-12b-oles 3h–3m in moderate to excellent yields. These novel heterocycles were formed via a Michael addition reaction followed by intramolecular cyclization via a dearomatization process.  相似文献   

17.
We explore Noether symmetries of the Friedmann–Robertson–Walker universe model in modified Gauss–Bonnet gravity for both vacuum and nonvacuum (dust fluid) cases. We evaluate symmetry generators and the corresponding conserved quantities by using separation of variables and a power-law form. We construct exact f(G) models and study accelerating expansion of the universe in terms of a scale factor, deceleration, and the EoS parameters. We also check the validity of energy conditions through the weak energy conditions for our constructed model. The state finder parameters indicate the resemblance of our constructed models to the ΛCDM model. We conclude that our results are consistent with the recent astrophysical observations.  相似文献   

18.
We investigate whether the new horizon first law proposed recently still work in f(R) theory. We identify the entropy and the energy of black hole as quantities proportional to the corresponding value of integration, supported by the fact that the new horizon first law holds true as a consequence of equations of motion in f(R) theories. The formulas for the entropy and energy of black hole found here are in agreement with the results obtained in literatures. For applications, some nontrivial black hole solutions in f(R) theories have been considered, the entropies and the energies of black holes in these models are firstly computed, which may be useful for future researches.  相似文献   

19.
Recently f(T) theories based on modifications of teleparallel gravity, where torsion is the geometric object describing gravity instead of curvature, have been proposed to explain the present cosmic accelerating expansion. The field equations are always second order, remarkably simpler than f(R) theories. In analogy to the f(R) theory, we consider here three types of f(T) gravity, and find that all of them can give rise to cosmic acceleration with interesting features, respectively.  相似文献   

20.
It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号