首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium/sulfur (Li/S) batteries have a high theoretical specific capacity of 1672 mAh g?1. However, the insulation of the elemental sulfur and polysulfides dissolution could result in poor cycling performance of Li/S batteries, thus restricting the industrialization process. Here, we prepared sulfur-based composite by thermal treatment. The modified acetylene black (H-AB) was used as a carrier to fix sulfur. The H-AB could interact with polysulfides and reduce the dissolution of polysulfides in the electrolyte. Nonetheless, the conductivity of H-AB relatively reduced. So the conductivity of the sulfur electrode would be improved by the addition of the conductive agent (AB). In this paper, the different content of conductive agent (AB) in the sulfur electrode was studied. The electrochemical tests indicate that the discharge capacity of the sulfur electrode can be increased by increasing the conductive agent (AB) content. The H-AB@S composite electrode with 30 wt.% conductive agent has the best cycle property. The discharge capacity still remains at 563 mAh g?1 after 100 cycles at 0.1 C, which is 71% retention of the highest discharge capacity.  相似文献   

2.
Li-S batteries are one of exciting new technologies in high energy density storage devices. But, their widespread commercialization has been limited by several obstacles. Elemental sulfur is not conductive electrically and electrochemical conversion during cycles causes intense change in volume. In this work, a sulfur/polyaniline/nitrogen-doped graphene aerogel (S@PANi-NGA) nanocomposite synthesized through a facile chemical procedure. Nitrogen-doped amino functionalized graphene aerogel (NGA) used as cross-linker for polyaniline to improve the stability of the entire cathode framework. Also, NGA possesses porous structure, high surface area, and enhances electronic conductance due to the nitrogen atoms doped into graphene sheets. As a result, S@PANi-NGA delivered an initial discharge capacity of 1332 mAh g?1 at a scan rate of 0.2 C and 872 mAh g?1 of the capacity retained after 100 cycles. The performance was clearly superior to the sulfur/PANi binary composite, in which pure polyaniline used as accommodator.  相似文献   

3.
Ni foam and carbon fiber cloth were tested as three-dimensional (3D) current collectors for a sulfur/polypyrrole composite cathode in lithium batteries. The cell with the carbon fiber current collector has exhibited remarkably enhanced electrochemical performance compared with its Ni foam counterpart, delivering a high initial capacity of 1,278 mAh g?1 and maintaining a discharge capacity at 810 mAh g?1 after 40 cycles at 0.06 C. Furthermore, the carbon fiber-based cell demonstrated a better rate capability and delivered a highly reversible discharge capacity of 397 mAh g?1 after 50 cycles at 0.5 C, representing an increase of 194 mAh g?1 compared to the Ni foam counterpart. The electrochemical property investigations along with scanning electron microscope studies have revealed that the carbon fiber current collector possesses a three-dimensional network structure, provides an effective electron conduction path, and minimizes the loss of electrical contact within the deposited cathode material during cycling. These results indicate that the carbon fiber cloth can be used as a promising, effective, and inexpensive current collector for Li/S batteries.  相似文献   

4.
Porous carbon nanosheets (PCNSs), porous carbon nanofibers (PCNFs), and flowerlike porous carbon microspheres (FPCMs) were successfully synthesized through a carbonization method combined with a simple acid pickling treatment using calcium citrate as the precursor. The as-prepared products show uniform morphologies, in which the FPCMs are self-assembled from PCNSs. As anodes of lithium-ion (Li-ion) batteries, these carbon materials deliver a stable reversible capacity above 515 mAh g?1 after 50 cycles at 100 mA g?1. Compared with PCNSs and PCNFs, FPCMs demonstrate preferable rate capability (378 mAh g?1 at 1 A g?1) and cyclability (643 mAh g?1 at 100 mA g?1). These results suggest that an appropriate select of morphology and structure will significantly improve the lithium storage capacity. The study also indicates that the novel shape-controlled porous carbon materials have potential applications as electrode materials in electronic devices.  相似文献   

5.
Biomass-derived porous carbon materials have recently received considerable attention for the use in energy storage devices due to the low cost. In the work here, water-absorbing biomass of agarics has been used directly to synthesize three-dimensional porous graphene-like (3D-PGL) via a facile, economical, and eco-friendly two-step solid-state transformation process. Characterization results reveal that Fe3+ pre-adsorbed agarics are carbonized to be uniform Fe3O4/C composite in the first step. Then the C precursor is catalyzed to be 3D-graphene in the second step by in situ-formed Fe that was reduced by C around. When assembled as anodes for lithium-ion batteries, the 3D-PGL delivers excellent cycling performance (as high as 572 mAh g?1 after 1200 cycles’ running at 0.2 A g?1). Furthermore, it is worth to mention that when tuning the amount of pre-adsorbed Fe3+, two-dimensional graphene sheet (2D-GS) is obtained.  相似文献   

6.
Red phosphorus (RP) is considered to be one of the promising anode materials for lithium-ion batteries (LIBs) on account of its high theoretical capacity (2596 mAh g?1), abundant resources, and environmental friendliness. However, the intrinsic insulating nature and large volume change during lithium insertion/extraction process lead to drastic capacity loss upon cycling. Recently, great attention has been devoted to constructing P-based composites via mixing with carbon materials. Here, a novel P/C composite, in which red P nanoparticles were homogeneously distributed in cigarette filter-derived porous carbon (CPC), was fabricated by vaporization-condensation method. Due to the unique characteristics of porous carbon, including high specific area, good conductivity, and rich internal porous structure, CPC obtained by means of heat treatment that serves as conductive matrix to load red P could be of great benefits, which can not only improve the overall electrical conductivity but also mitigate the volume expansion issues. As a result, the RP/CPC composite as an anode material for LIBs delivers a good cycling stability (500 mAh g?1 at 100 mA g?1 with a high Coulombic efficiency above 99% after 50 cycles) and rate capability (355 mAh g?1 even at 1000 mA g?1).  相似文献   

7.
For Li-S batteries, commercial application was hindered by the insulating nature of S and the solubility of polysulfide. Porous carbon materials had proven themselves to be an ideal immobilizer host for S impregnation. Herein, carbon aerogels (CAs) with tunable pore microstructure were synthesized from resorcinol-formaldehyde reaction with increasing catalyst concentration and pyrolysis under high temperature. The results demonstrated that the catalyst concentration played a key role in tuning the porous microstructure of the CAs. In addition, potassium hydroxide (KOH) was introduced to activate the obtained CAs. The activated carbon aerogels (A-CAs) with hierarchical porous structure exhibited the highest specific surface area (1837.4 m2 g?1) and the largest total pore volume (2.276 cm3 g?1), which combined the advantages of both mesoporous and microporous. The effects of porous microstructure, specific surface area, and pore volume of the CAs and A-CAs on S incorporation were studied. The S/A-CAs exhibited significantly improved reversible capacity (1260 mAh g?1 at a rate of 0.1 C), enhanced high-rate property, and excellent cycling performance (229 mAh g?1 after 500 cycles at 1 C) as a cathode for Li-S batteries.  相似文献   

8.
A three-dimensional nitrogen-doped graphene/sulfur composite (NGS3) was synthesized by a simple hydrothermal method using urea as the nitrogen source and subsequent thermal treatment. The structure and electrochemical performance of the prepared nitrogen-doped graphene/sulfur composite (NGS3) were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Energy dispersive spectroscopy mapping (EDS), and galvanostatic charge/discharge measurements. SEM and EDS mapping show that NGS3 exhibits a porous structure with uniform distribution of sulfur. Compared with the graphene/sulfur composite (NGS1), NGS3 delivers an outstanding rate capability with 1501, 1278, 1136, and 1024 mAh g?1 at 200, 400, 800, and 1000 mA g?1, respectively, and the cycle stability of NGS3 is also wonderful, a reversible discharge capacity of 1330 mAh g?1 is obtained after 80 cycles under the current rate of 200 mA g?1. The wonderful electrochemical performance could be attributed to the special three-dimensional conductive structure with the help of nitrogen atom.  相似文献   

9.
A distinctive structure of carbon materials for Li-ion batteries is proposed for the preparation of red phosphorus-carbon composites. The slit-shaped porous carbon is observed with aggregation of plate-like particles, whose isotherm belongs to the H3 of type IV. The density functional theory (DFT) method reveals the presence of micro-mesopores in the 0.5–5 nm size range. The unique size distribution plays an important role in adsorbing phosphorus and electrochemical performance. The phosphorus-slit-shaped porous carbon composite shows initial capacity of 2588 mAh g?1, reversible capacity of 1359 mAh g?1 at a current density of 100 mA g?1. It shows an excellent coulombic efficiency of ~99 % after 50 cycles.  相似文献   

10.
Hard carbon is considered as the most promising anode material for practical sodium ion batteries. Herein, we report biomass-derived hard carbon made from corn straw piths through a simple carbonization process. X-ray diffraction patterns and Raman spectra elucidated highly disordered structures, and high-resolution transmission electron microscopy confirmed that the hard carbons have many local ordered structures containing turbostratic nanodomains and more nanovoids surround the turbostratic nanodomains. The electrochemical performances of the hard carbons were systematically investigated in sodium ion batteries. By optimizing the carbonization temperature, the sample carbonized at 1400 °C (HC1400) exhibited high reversible capacity of 310 mAh g?1 and good cycling stability; the capacity can still retain 274 mAh g?1 after 100 cycles. More importantly, HC1400 can deliver reversible capacity of 206 mAh g?1 with 79% retention rate after 700 cycles measured at a current density of 200 mA g?1, which is much better than those in most previous reports. This study provides a way to develop inexpensive, renewable, and recyclable materials from biomasses towards next-generation energy storage applications.  相似文献   

11.
A commercial carbon black with microporous framework is used as carbon matrix to prepare sulfur/microporous carbon (S/MC) composites for the cathode of lithium sulfur (Li-S) battery. The S/MC composites with 50, 60, and 72 wt.% sulfur loading are prepared by a facile heat treatment method. Electrochemical performance of the as-prepared S/MC composites are measured by galvanostatic charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), with carbonate-based electrolyte of 1.0 M LiPF6/(PC-EC-DEC). The composite with 50 wt.% sulfur presents the optimized electrochemical performance, including the utilization of active sulfur, discharge capacity, and cycling stability. At the current density of 50 mA g?1, it can demonstrate a high initial discharge capacity of 1624.5 mAh g?1. Even at the current density of 800 mA g?1, the initial capacity of 1288.6 mAh g?1 can be obtained, and the capacity can still maintain at 522.8 mAh g?1 after 180 cycles. The remarkably improved electrochemical performance of the S/MC composite with 50 wt.% sulfur are attributed to the carbon matrix with microporous structure, which can effectively enhance the electrical conductivity of the sulfur cathode, suppress the loss of active material during charge/discharge processes, and restrain the migration of polysulfide ions to the lithium anode.  相似文献   

12.
Three-dimensional (3-D) porous copper with stable pore structure is prepared by electroless plating. 3-D porous Sn–Co alloy/carbon nanotube (CNT) composite is synthesized by electrodeposition using 3-D porous copper as the substrate. The scanning electron microscope results indicate that 3-D porous Sn–Co alloy/CNT composite contains a large amount of interconnected pores with the diameter size of ~3 μm. Upon cycling, the pore structure gradually disappears, but no serious exfoliation appears due to porous structure and reinforcement by CNT. The charge/discharge results demonstrate that the 3-D porous Sn–Co alloy/CNT composite electrode delivers high first reversible specific capacity of 490 mAh g?1, and remains 441 mAh g?1 after 60 cycles tested at different current densities. Even at the current density of 3,200 mA g?1, the reversible specific capacity remains 319 mAh g?1, which is 65 % of the first specific capacity cycled at the current density of 100 mA g?1.  相似文献   

13.
Herein, porous hollow silica nanospheres were prepared via a facile sol-gel process in an inverse microemulsion, using self-assemblies of chiral amphiphile as a soft template and fine water droplets as a hard template. The shells of the hollow silica nanospheres are composed of flake-like nanoparticles with dense big holes on the surface. After covering a layer of sulfur on the silica nanospheres, followed by hydrothermal treatment in a D-glucose aqueous solution, silica-sulfur and silica-sulfur-carbon nanospheres were successfully fabricated. The silica-sulfur composites exhibit a stable capacity of 454 mAh g?1 at current density of 335 mA g?1 after 100 cycles with capacity retention of 85%, demonstrating a promising cathode material for rechargeable lithium-sulfur batteries. We believe that the approach for synthesis of porous hollow silica nanospheres and its carbon spheroidal shell can also be applicable for designing other electrode materials for energy storage.  相似文献   

14.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

15.
A binder-free three-dimensional porous interconnected graphene (a-3DrGO@NF) was centrifugally constructed and KOH-activated at 800 °C, leading a mechanically strong and pore-developed anode candidate for lithium ion batteries (LIBs). The unique approach of the integration of the mechanical construction and thermal activation demonstrated favorable frameworks to facilitate the stable and fast migrations of both ion and electron during the galvanostatic charge/discharge process, thus significantly improving its durability and electrochemical performance compared to those without the activated and thermal treatment. The a-3DrGO@NF LIBs showed a highly reversible capacity of 1250 mAh g?1 at a current density of 0.1 A g?1 after 50 cycles without degradation relative to the first cycle. More importantly, the a-3DrGO@NF LIBs exhibited excellent large current discharge property and cyclic stability of 965 mAh g?1 in its first cycle and 545 mAh g?1 after 150 cycles at a current density of 4 A g?1. Furthermore, it can be quickly charged and discharged in a very short time of 92 s together with high-rate capability of 256 mAh g?1 after 200 cycles at 10 A g?1. At both lower and higher its current density as to 10 A g?1, the coulombic efficiency was close to 100% and showed the reliability of a-3DrGO@NF LIBs.  相似文献   

16.
With the aim to develop high-performance sulfur electrode, manganese sulfide (MnS) was combined with sulfur/porous carbon composite electrode by a simple precipitation method. Both X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results show that as-prepared MnS corresponds to Rambergite phase with a hexagonal structure (γ-MnS). MnS could be uniformly dispersed in the carbon matrix when the content was less than 20 wt%. When the content of MnS increased, γ-MnS particles aggregated on both outside of the mesoporous carbon channels and the surface of carbon particles. The CV curves of MnS/MC in the first cycle were similar to elemental sulfur, indicating partially decomposed MnS at the surface of mesoporous carbon. Charge/discharge tests indicated that the initial discharge-specific capacity of S/MnS/MC was 1412.5 mAh g?1 and remained a reversible capacity of 727.4 mAh g?1 after 50 cycles at a current of 100 mA g?1, which is superior to that of sulfur composite electrode without MnS.  相似文献   

17.
Herein, we demonstrate a facile one-step hydrothermal synthesis route to anchor ZnO nanoparticles on nitrogen and sulfur co-doped graphene sheets. The detailed material and electrochemical characterization have been carried out to demonstrate the potential of novel ZnO/NSG nanocomposite in Li-ion battery (LIBs) applications. The structure and morphology of nanocomposite were assessed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized ZnO/NSG nanocomposite has been studied as anode material in LIBs and delivered a high initial discharge capacity of 1723 mAh g?1, at the current density of 200 mA g?1. After 100 cycles, the ZnO/NSG nanocomposites demonstrated a high reversible capacity of 720 mAh g?1 and coulombic efficiency of 99.8%, which can be attributed to the porous three-dimensional network, constructed by ZnO nanoparticles and nitrogen and sulfur co-doped graphene. Moreover, the designed nanocomposite has shown excellent rate capability and lower charge transfer resistance. These results are promising and encourage further research in the area of ZnO-based anodes for next-generation LIBs.  相似文献   

18.
Dan Zhou  Li-Zhen Fan 《Ionics》2018,24(10):3065-3073
Novel three-dimensional porous carbon network (3D-PC) anode was developed by a facile in situ NaCl-template method utilizing citric acid as carbon source. The synthesis process involves the dissolution of NaCl and citric acid in deionized water, citric acid coated on NaCl template during freeze-drying process, carbonization of the composites, and removal of the template with water. The resultant 3D-PC presents high electrical conductivity, large specific surface area, sufficient active sites, large interlayer distance, and high mechanical flexibility, which are contributed to the efficient Na-storage. Therefore, the 3D-PC anode displays enhanced rate performance of 101 mAh g?1 at 1000 mA g?1 and extremely long cycle life of 138 mAh g?1 after 2000 cycles at 200 mA g?1. The unique synthesis strategy coupled with the excellent Na-storage performance ensures 3D-PC a promising anode material for low-cost sodium-ion batteries.  相似文献   

19.
Polyacrylonitrile nanofiber cloth coated with graphene oxide was carbonized and activated to fabricate nitrogen- and oxygen-enriched porous carbon/graphene (NAC@Gr) sandwich-like composites. The influence of graphene coating on the microstructure, surface composition, and supercapacitive performance of the as-prepared composites was investigated. The results indicated that significantly enhanced energy storage capability can be achieved due to the high specific surface area, optimized pore structure, and surface functionality. The composites show both high gravimetric and volumetric specific capacitances, for example, 380 F g?1 (178 F cm?3) at 0.1 A g?1 in 6 M KOH and 228 F g?1 (125 F cm?3) at 1 A g?1 in 1 M TEABF4/AN electrolyte. The assembled symmetric supercapacitors exhibit high energy density, high power density, excellent cycling stability, and high-rate performance.  相似文献   

20.
Flower-like MoS2 supported on three-dimensional graphene aerogel (MoS2/GA) composite has been prepared by a facile hydrothermal method followed by subsequent heat-treatment process. Each of MoS2 microflowers is surrounded by the three-dimensional graphene nanosheets. The MoS2/GA composite is applied as an anode material of sodium-ion batteries (SIBs) and it exhibits high initial discharge/charge capacities of 562.7 and 460 mAh g?1 at a current density of 0.1 A g?1 and good cycling performance (348.6 mAh g?1 after 30 cycles at 0.1 A g?1). The good Na+ storage properties of the MoS2/GA composite could be attributed to the unique structure which flower-like MoS2 are homogeneously and tightly decorated on the surface of three-dimensional graphene aerogel. Our results demonstrate that as-prepared MoS2/GA composite has a great potential prospect as anodes for SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号