首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

2.
以大豆磷脂为主要的表面活性剂,制备适合毛细管电动色谱使用的不同构成比的微乳体系, 应用溶剂化参数模型研究了中性溶质在其中的定量结构保留关系.使用动态涂层毛细管, 以二甲基亚砜和十二烷基苯分别作为电渗流和微乳液滴迁移的标记物, 测定了26个具有不同结构小分子中性化合物在17种微乳电动色谱体系下的保留因子, 建立了线性溶剂化能量关系(LSER)方程.通过比较两体系的LSER方程系数比较体系相似性.结果表明, 本研究建立的磷脂微乳电动色谱体系在线性溶剂化特征上和其它构成的微乳电动色谱体系相似.对溶质保留贡献较大的是溶质体积和有效氢键碱度, 油相种类及浓度对溶质的保留选择性无明显影响.  相似文献   

3.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

4.
Chi-Lin Li 《Talanta》2009,79(3):851-1675
Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/ρ) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (p < 0.05) preference to hydrogen-bond acidic molecules. Through dipole-dipole attraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s = 1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b = 1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.  相似文献   

5.
This work presents the usefulness of five different solid-phase microextraction fibers in the screening of volatile organic compound (VOC) traces in air samples. The performances of these fibers are compared by studying the sorption kinetics in an equimolar gaseous mixture of eleven VOCs. For each fiber, static and dynamic sampling are compared. It is shown that repeatability is better for the dynamic mode (less than 6% for dynamic sampling and 10% for static sampling). The equilibrium time and the sensitivity vary considerably from one fiber type to another. As an example, the classical polydimethylsiloxane (PDMS) coating presented the shortest equilibration time (5 min) but also the poorest sensitivity, whereas the PDMS-Carboxen showed the longest extraction time but the greatest sensitivity. The estimation of the quantity of VOCs fixed on the target fiber allows for the determination of the different affinities of the compounds with the involved sorbent and relates them with physicochemical properties of the molecules. Competitive sorption is observed for the fibers involved with the adsorption process (i.e., PDMS-divinylbenzene and PDMS-Carboxen fibers). These competitions can lead to SPME calibration problems and thus bad quantitative analysis.  相似文献   

6.
The linear solvation energy relationship (LSER) model is employed to correlate the tracer diffusion coefficients of 550 binary systems at 298.15 K. Among the selected solutes and solvents there exist apolar, polar and hydrogen-bonding substances that can interact with themselves (solvent polymerization) or with the other compound (solute–solvent complexes formation). The results of the proposed formulas are compared with those of other predictive equations.  相似文献   

7.
8.
Water-to-polydimethylsiloxane (PDMS) and gas-to-PDMS sorption coefficients have been compiled for 170 gaseous and organic solutes. Both sets of sorption coefficients were analyzed using the Abraham solvation parameter model. Correlations were obtained for both "dry" headspace solid-phase microextraction and conventional "wet" PDMS coated surfaces. The derived equations correlated the experimental water-to-PDMS and gas-to-PDMS data to better than 0.17 and 0.18 log units, respectively. In the case of the gas-to-PDMS sorption coefficients, the experimental values spanned a range of approximately 11 log units.  相似文献   

9.
10.
11.
12.
Linear solvation energy relationship (LSER) amended by the introduction of a molecular electronic factor was employed to establish quantitative structure-retention relationship of biopartitioning micellar chromatography (BMC) system. The chromatographic indices, log k, were determined by LC on a C18 column for sixty-five structurally diverse compounds, including neutral (32), acidic (19) and basic (14) compounds. Two micellar mobile phases composed of 0.04 mol L?1 polyoxyethylene (23) lauryl ether (Brij35) were adjusted by phosphate buffer to pH 7.4 and pH 6.5, respectively. When the mean net charge per molecule (δ) was introduced into LSER as the sixth variable, the LSER regression coefficients and predictive capability were significantly improved. However, the δ coefficients of the amended LSER were quite different for acidic and basic compounds, indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds in the studied BMC system. This may attribute to the extra interaction for ionized compounds with the free silanol groups in the stationary phase. The comparison of calculated and experimental retention indices suggested that the amended LSER could reproduce adequately the retention of the structurally diverse solutes investigated in BMC.  相似文献   

13.
The linear solvation energy relationship (LSER) was applied to characterize biopartitioning micellar chromatography (BMC) system using monolithic column, and was utilized to compare the above system with other physicochemical and biological processes in this study. The solute volume and HB basicity had the maximum influence on the retention of the solutes, and an increase in the dipolarity/polarizability, HB basicity, HB acidity or excess molar refraction of the solutes decreased the retention. Principal component analysis of LSER coefficients showed that the system had certain similarity to drug biomembrane transport processes, such as blood–brain barrier penetration, transdermal and oral absorption. The quantitative retention–activity relationship (QRAR) of drug penetration across blood–brain barrier was established and its predictive capability for this biological process was evaluated. With the aid of the high flow rate, the monolithic column significantly facilitated the high-throughput analysis of large compounds’ bank without changing the mechanism of the retention in BMC and without impairing good predictive capability of the biological processes. Accordingly, the BMC system, together with monolithic column, allows for high-throughput profiling the biological processes, such as blood–brain barrier penetration.  相似文献   

14.
Li J  Sun J  Cui S  He Z 《Journal of chromatography. A》2006,1132(1-2):174-182
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.  相似文献   

15.
The nature of solute interactions with biomembrane-like liposomes, made of naturally occurring phospholipids and cholesterol, was characterized using electrokinetic chromatography (EKC). Liposomes were used as a pseudo-stationary phase in EKC that provided sites of interactions for uncharged solutes. The retention factors of uncharged solutes in liposome EKC are directly proportional to their liposome-water partition coefficients. Linear solvation energy relationship (LSER) models were developed to unravel the contributions from various types of interactions for solute partitioning into liposomes. Size and hydrogen bond acceptor strength of solutes are the main factors that determine partitioning into lipid bilayers. This falls within the general behavior of solute partitioning from an aqueous into organic phases such as octanol and micelles. However, there exist subtle differences in the solvation properties of liposomes as compared to those of octanol and various micellar pseudo-phases such as aggregates of sodium dodecyl sulfate (SDS), sodium cholate (SC), and tetradecylammonium bromide (TTAB). Among these phases, the SDS micelles are the least similar to the liposomes, while octanol, SC, and TTAB micelles exhibit closer solvation properties. Subsequently, higher correlations are observed between partitioning into liposomes and the latter three phases than that into SDS.  相似文献   

16.
《Analytical letters》2012,45(15):2457-2465
In order to explore the analytical performance of Headspace-Solid-phase Microextraction (HS-SPME), the sensitivity of gas chromatography (GC)-Mass Spectrometry (MS) determinations was examined in terms of calibration slopes, that is, response factor values of selected volatile organic compounds (VOC). The HS-SPME was applied to extract two kinds of gaseous VOC analytes, namely group I (methyl ethyl ketone, isobutyl alcohol, methyl isobutyl ketone, and butyl acetate, all having high water solubility) and group II (benzene, toluene, styrene, and xylene, all having moderate water solubility) from water solutions. The results, derived by both external and internal calibration, were then evaluated by considering headspace sample volume and solute volatility. In the case of solutes consisting of group I, sensitivity seems to increase with increasing HS size, although there are no such discernible patterns for group II solutes. The observed relative patterns in extraction efficiency may be accounted for by the differences in intermolecular forces present between the compounds of groups I and II and the possible effects of diffusion kinetics of the VOCs to the SPME fiber or competitive adsorption between different VOCs. As such, sensitivity of HS-SPME is tightly affected by the air-water partitioning properties of the target compounds and the response of SPME to such properties.  相似文献   

17.
18.
19.
Solid-phase microextraction (SPME) with adsorptive Carboxen/PDMS fibre is a powerful sampling device for volatile organic compounds (VOCs) at trace levels in air. However, owing to competitive adsorption, quantification remains a challenging task. In this area, a theoretical model, based on Fick's laws and an extended Langmuir equation, is proposed to deal with the adsorption kinetics of acetone/toluene mixture on SPME fibre under various static extraction conditions. The semipredictive model is first used to determine the axial diffusion coefficients of analytes in the sampling device. The model is then tested with a complex VOC mixture, showing good agreement with experimental data.  相似文献   

20.
A series of surface-confined ionic liquid (SCIL) stationary phases for high-performance liquid chromatography were synthesized in-house. The synthesized phases were characterized by the linear solvation energy relationship (LSER) method to determine the effect of residual linking ligands and the role of the cation and the anion on retention. Statistical analysis was utilized to determine whether the system coefficients returned from multiple linear regression analysis of chromatographic retention data for a set of 28 neutral aromatic probe solutes were significantly different. Examination of the energetics of retention via κκ plots agrees with the results obtained from the LSER analysis. Residual linking ligands were determined to contribute reversed-phase-type retention character to the chromatographic system. Furthermore, retention on the SCIL phases was observed to be more profoundly affected by the identity of the anion than by that of the cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号