首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We report observation of nanostructures formed on thin TiN and DLC films that were irradiated by 800- and 267-nm, femtosecond (fs) Ti:sapphire laser pulses at an energy fluence slightly above the ablation threshold. On the ablated thin-film surfaces, the linearly polarized fs pulses produce arrays of fine periodic structures that are almost oriented to the direction perpendicular to the laser polarization, while the circularly polarized light forms fine-dot structures. The size of these surface structures is 1/10–1/5 of the laser wavelength and decreases with a decrease in the laser wavelength. Received: 3 September 2002 / Accepted: 4 September 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-778/62-3306, E-mail: yasuma@fukui-nct.ac.jp  相似文献   

2.
Surface nanostructuring of silicon   总被引:1,自引:0,他引:1  
Irradiation with polarized laser light of 248-nm wavelength induces the formation of periodic undulations ∼10-nm-highon flat silicon substrates. The wavelength of these periodic structures is a function of the light wavelength and the angle of incidence of the laser beam. Linear arrays of silicon nanoparticles with fairly uniform size that extended up to a millimeter were formed if the irradiation was performed using polarized light. When non-polarized laser light with the same fluence was used to illuminate an initially flat surface, non-aligned nanoparticle strings were obtained. However, if part of the irradiated area was microstructured, nanoparticle linear arrays resulted in the vicinity of the microstructured region. An analysis on the evolution of these nanostructures is presented. Nanocolumns could be grown on top of every cone of a microstructured surface upon cumulative laser irradiation with non-polarized light, reaching a height of ∼3 μm and a diameter of 100–200 nm. The mechanisms of nanocolumn origin and growth are analyzed. Received: 16 December 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +1-865/974-4115, E-mail: apedraza@utk.edu  相似文献   

3.
Nanostructures on metal film surfaces have been written directly using a pulsed ultraviolet laser. The optical near-field effects of the laser were investigated. Spherical silica particles (500–1000 nm in diameter) were placed on metal films. After laser illumination with a single laser shot, nanoholes were obtained at the original position of the particles. The mechanism for the formation of the nanostructure patterns was investigated and found to be the near-field optical resonance effect induced by the particles on the surface. The size of the nanohole was studied as a function of laser fluence and silica particle size. The experimental results show a good agreement with those of the relevant theoretical calculations of the near-field light intensity distribution. The method of particle-enhanced laser irradiation allows the study of field enhancement effects as well as its potentialapplications for nanolithography. Received: 10 December 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +65-777/1349, E-mail: HUANG_Sumei@dsi.a-star.edu.sg  相似文献   

4.
5.
The preparation in thin film form of the known icosahedral phase in Ti-Ni-Zr bulk alloys has been investigated as a function of substrate temperature. Films were deposited by pulsed laser deposition on sapphire substrates at temperatures ranging from room temperature to 350 °C. Morphological and structural modifications have been followed by grazing-incidence and θ–2θ X-ray diffraction, transmission electron diffraction and imaging. Chemical composition has been analyzed by electron probe microanalysis. The in-depth variation of composition has been studied by secondary neutral mass spectroscopy. We show that pulsed laser deposition at 275 °C makes the formation of a 1-μm-thick film of Ti-Ni-Zr quasicrystalline textured nanocrystallites possible. Received: 7 June 2001 / Accepted: 18 February 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +33-3/8357-6300, E-mail: brien@mines.u-nancy.fr  相似文献   

6.
A new laser medium – Yb,Tm:KY(WO4)2 – for diode pumped solid state laser applications operating around 1.9 to 2.0 μm has been investigated and the main laser characteristics are presented. Diode pumping at 981 nm and around 805 nm was realised. For 981-nm pumping, the excitation occurs into Yb3+ ions followed by an energy transfer to Tm3+ions. A slope efficiency of 19% was realised. For pumping around 805 nm, the excitation occurs directly into the Tm3+ ions. Here a maximum slope efficiency of 52%, an optical efficiency of 40%, and output powers of more than 1 W were realised. Using a birefringent quartz plate as an intracavity tuning element, the tunability of the Yb,Tm:KY(WO4)2 laser in the spectral range of 1.85–2.0 μm has been demonstrated. The possibility of laser operation in a microchip cavity configuration for this material has also been shown. Received: 12 March 2002 / Revised version: 20 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-531/592-4116, E-mail: stefan.kueck@ptb.de  相似文献   

7.
Applying the combination of a solid-state Ti:Sa laser system and a newly developed wide-aperture, discharge-pumped KrF amplifier, output pulses with over 9 W average power at 300 Hz have been achieved in a single output beam. The frequency-tripled seed pulses of the Ti:Sa system – delivering approximately 10 μJ energy at 248 nm – were amplified to over 30 mJ using a 3-pass off-axis amplification scheme. The optical set-up has been fitted to the amplifier’s parameters, and stored-energy measurements were carried out with different parameters in order to optimize the operational conditions of the device for the highest average power. Received: 10 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-551/503-599, E-mail: jbekesi@llg.gwdg.de  相似文献   

8.
Coupled thermal and carrier transports (electron/hole generation, recombination, diffusion and drifting) in laser photoetching of GaAs thin film is investigated. A new volumetric heating mechanism originating from SRH (Shockley–Read–Hall) non-radiative recombination and photon recycling is proposed and modeled based on recent experimental findings. Both volumetric SRH heating and Joule heating are found to be important in the carrier transport, as well as the etching process. SRH heating and Joule heating are primarily confined within the space-charge region, which is about 20 nm from the GaAs surface. The surface temperature rises rapidly as the laser intensity exceeds 105 W/m2. Below a laser intensity of 105 W/m2, the thermal effect is negligible. The etch rate is found to be dependent on the competition between photovoltaic and photothermal effects on surface potential. At high laser intensity, the etch rate is increased by more than 100%, due to SRH and Joule heating. Received: 24 January 2002 / Accepted: 11 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-310/206-2302, E-mail: xiang@seas.ucla.edu  相似文献   

9.
We describe the measurement of the line width of an atom laser beam extracted from a Bose–Einstein condensate. Using a novel magnetic resonance imaging technique, we find that the energy width of the atom laser beam is Fourier-limited by the duration of the output-coupling process. Received: 25 July 2002 / Revised version: 28 October 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +41-1/633-1254, E-mail: koehl@iqe.phys.ethz.ch  相似文献   

10.
The coherent combining of two Nd:YAG lasers using a Vernier–Michelson-type cavity has been demonstrated. The spectral behaviour and the energetic performance are reported. We firstly show that the combining efficiency is not strongly spoilt by the gain imbalance between the two amplifying media, and secondly, that despite the interferometric nature of the cavity, the Vernier–Michelson laser can withstand environmental perturbations without alteration in output power. Received: 25 April 2002 / Revised version: 18 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +33-5/5545-7253, E-mail: kermene@ircom.unilim.fr  相似文献   

11.
We report on the laser action of rhodamine 6G (Rh6G) incorporated into new hybrid organic–inorganic monolithic materials. The synthesis of these materials proceeded via the simultaneous sol-gel process of the inorganic part (tetraethoxysilane or tetramethoxysilane) and the free-radical polymerization of an organic monomer part (2-hydroxypropyl methacrylate, 2-hydroxyethyl methacrylate and a 1:1 v/v copolymer of this monomer with methyl methacrylate). The wt. % proportion of the alkoxide was systematically varied in each organic formulation, and the effect of each organic–inorganic composition on the lasing properties of Rh6G was evaluated. The laser samples were transversely pumped and the influence on the laser action of dye concentration, pump wavelength and pump repetition rate was analyzed. Lasing efficiencies of up 26% and good stabilities, with a 90% drop in the initial laser output of up to 12000 pump pulses at 2.5 Hz, were obtained when the samples were pumped at 355 nm with 5.5 mJ/pulse from the third harmonic of a Q-switched Nd:YAG laser. Received: 31 July 2002 / Revised version: 14 October 2002 / Published online: 20 December 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/564-4853, E-mail: ogarcia@ctp.csic.es  相似文献   

12.
Ablation rates of aluminum and stainless steel are studied as a function of fluence, hole depth, pulse duration and ambient pressure (air vs vacuum). We find a weak rate dependence on pulse duration from 150 fs to 500 ps, and a strong rate dependence on hole depth due to surface roughness. Machining in air plays an important role in deep holes, but has a weaker influence on initial surface ablation rates. Oxidation greatly reduces drilling rates for deep holes in aluminum. Received: 26 December 2001 / Accepted: 9 July 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +1-925/422-5537, E-mail: stuart3@llnl.gov  相似文献   

13.
The generation of submicron-sized holes on metal surfaces by applying femtosecond UV laser pulses was investigated. Different optical schemes based on a Schwarzschild-type reflective objective were used to reach optimized ablation quality and efficiency in different applications (hole ablation, through-hole drilling, generation of surface patterns consisting of holes, etc.). Submicron-sized holes and hole patterns were ablated onto metal surfaces and drilled through ∼5-μm-thick steel foils with 600-nm diameter on the output side. Using a special optical interferometric method, large-area surface processing of high-conductivity materials in the submicron regime was performed. Combining these techniques with the application of high-repetition-rate ultra-short UV laser sources, large-area sub-μm processing of all kinds of materials in industrial environments is possible. Received: 28 February 2002 / Accepted: 12 March 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +49-551/503599, E-mail: psimon@llg.gwdg.de  相似文献   

14.
A novel instrument, based on cavity-ringdown spectroscopy (CRDS), has been developed for trace gas detection. The new instrument utilizes a widely tunable optical parametric oscillator (OPO), which incorporates a zinc–germanium–phosphide (ZGP) crystal that is pumped at 2.8 μm by a 25-Hz Er,Cr:YSGG laser. The resultant mid-IR beam profile is nearly Gaussian, with energies exceeding 200 μJ/pulse between 6 and 8 μm, corresponding to a quantum conversion efficiency of approximately 35%. Vapor-phase mid-infrared spectra of common explosives (TNT, TATP, RDX, PETN and Tetryl) were acquired using the CRDS technique. Parts-per-billion concentration levels were readily detected with no sample preconcentration. A collection/flash-heating sequence was implemented in order to enhance detection limits for ambient air sampling. Detection limits as low as 75 ppt for TNT are expected, with similar concentration levels for the other explosives. Received: 1 April 2002 / Revised version: 13 June 2002 / Published online: 12 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-408/524-0551, E-mail: mtodd@picarro.com  相似文献   

15.
A versatile CO laser-based photoacoustic spectrometer is presented equipped with three photoacoustic cells placed inside the laser cavity. The newly designed CO laser can operate both in the Δv=1 and the Δv=2 modes (5.1–8.0 μm and 2.8–4.1 μm) on 400 laser lines. Improved laser operation originating from a better cooling of the gas discharge was evidenced by a shift of the laser output power to lower J-values. Due to the wide emission range of the source, many molecules of biological and atmospheric interest, including methane and ethane, can be detected with sensitivities typically at the (sub)ppb level. Measurement of the respiration of a cockroach showed that the spectrometer is not only sensitive, but also has a good time response (8 s at a flow rate of 10 l/h). Received: 3 April 2002 / Revised version: 14 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Current address: Soegijapranata Catholic University, Department of Food Technology, Jalan Pawiyatan Luhur IV/1 Bendan Duwur, P.O. Box 8033/SM, Semarang 50234, Indonesia RID="**" ID="**"Current address: Sanata Dharma University, FMIPA, Kampus III, Paingan, Maguwoharjo, Depok, Sleman, Tromol Pos 29, Yogyakarta 55002, Indonesia RID="***" ID="***"Corresponding author. Fax: +31-24/365-3311, E-mail: fransh@ sci.kun.nl  相似文献   

16.
We describe a near-infrared in situ tunable diode laser spectrometer developed for atmospheric measurements of CH4 in the upper troposphere and lower stratosphere (UT/LS). The instrument is designed to provide fast-response (0.5–1 Hz) measurements and operate autonomously on the NASA WB-57F high-altitude aircraft. A single-mode InGaAsP distributed feedback laser diode operating at 1.6537 μm scans continuously over the R(3) rotation–vibration transition in the 2ν3 band. We use a direct absorption technique incorporating a custom-designed long path length (252 m) low-volume (3.6 L) astigmatic Herriott cell. The present detection sensitivity is 5×1010 molecules cm-3, corresponding to ∼20 ppbv in the UT/LS, with the main limit to instrument precision being background optical interference fringes. In-flight performance is demonstrated by presentation of recent data. Received: 25 January 2002 / Revised version: 5 April 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-303/497-5373, E-mail: richard@al.noaa.gov  相似文献   

17.
This paper reviews the work we have carried out over the last years on the development of ultrashort-laser-pulse-driven, rewritable, phase-change optical memories. The materials we have tailored for this application are non-stoichiometric, Sb-rich amorphous thin films, which can be crystallized upon irradiation with ultrashort laser pulses, showing a large optical contrast upon transformation. This result makes them very promising for the development of rewritable phase-change optical memories under ultrashort pulses, since the reversibility of the process has also been demonstrated. Adequate control of the heat-flow conditions has allowed us to achieve a full transformation time faster than 400 ps for crystallization/amorphization using 30-ps pulses. The crystallization threshold fluence has been found to decrease upon irradiation with pulses shorter than 800 fs, thus suggesting the relevance of high-electronic-excitation-induced processes in the amorphous-to-crystalline phase transition. This has been confirmed by the observation of an ultrafast, non-thermal phase transition occurring 200–300 fs after the arrival of the laser pulse at the surface, for fluences above the crystallization threshold. The presence of this transient phase conditions the final state induced therefore enabling the applicability of this material as a rewritable recording medium using femtosecond pulses. Received: 11 October 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/564-5557, E-mail: J.Solis@io.cfmac.csic.es  相似文献   

18.
Low-threshold field electron emission (FEE) is reported for periodic arrays of micro-tips produced by laser ablation of Si wafers. The best samples show emission at threshold fields as low as 4–5 V/μm for n-type Si substrates and of 1–2 V/μm for p-doped Si substrates, as measured with a flat-screen technique. Auger electron spectroscopy and X-ray electron spectroscopy reveal island-like deviation of the SiO2 stoichiometry on the tip surfaces, with lateral dimensions of less than 100 nm. Microscopic studies using a special field-emission STM show that the emission originates from well-conducting regions of sub-micron size. The experimental data suggest FEE from the tip arrays by a geometric field enhancement of both the individual micro-tip and the narrow conducting channels in the tip body. Received: 3 May 2002 / Accepted: 1 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +7-095/135-82-34, E-mail: shafeev@kapella.gpi.ru  相似文献   

19.
The article describes the manufacture and testing of a new type of semiconductor laser working at low temperatures (12–100 K) in the wavelength range 3200–3300 cm-1. This kind of laser can be tuned in the modal range up to 6 cm-1 and is characterized by a narrow spectral line width (about 7 MHz). Received: 12 September 2002 / Final version: 29 January 2003 / Published online: 22 May 2003 RID="*" ID="*"Corresponding author. Fax: +420-286/591-766, E-mail: civis@jh-inst.cas.cz  相似文献   

20.
Sub-ps laser microstructuring of soft X-ray Mo/Si multilayer gratings   总被引:1,自引:0,他引:1  
The sub-picosecond laser microstructuring of multilayer gratings is presented in this paper. A micromachining system operating with a 0.5 ps KrF laser at 248 nm was used to etch grating structures with a groove width of 1–2 μm in Mo/Si and Si/Mo multilayers. Atomic force microscopy, scanning electron microscopy and X-ray reflectivity were used to characterize the microetched patterns. The ω-scans around the 1st Bragg maximum show symmetric satellites up to 3rd order, with positions corresponding to the grating period. The use of sub-picosecond laser pulses minimizes the thermally affected zone and enhances the quality of the etched features. Short pulse laser processing is advantageous for the fabrication of high spatial resolution microstructures required in X-ray optics. Received: 21 May 2002 / Accepted: 19 August 2002 / Published online: 15 January 2003 RID="*" ID="*"Corresponding author. Email: dpapa@iesl.forth.gr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号