首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of action of inosine-uridine nucleoside hydrolase has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Five MD studies have been performed with enzyme substrate complex (E.S), enzyme substrate complex with protonated His241 (EH.S), enzyme transition state complex (E.TS), enzyme transition state complex with protonated His241 (EH.TS), and His241Ala transition state complex E(H241A).TS. Special attention has been given to the role of His241, which has been considered as the general acid catalyst to assist departure of the leaving nucleobase on the basis of its location in the active site in the X-ray crystal structure (). Yet on the basis of the location in the active site, Tyr229 is closer to the aniline ring of pAPIR as compared to His241. On initiation of MD simulations, His241 does not approach the nucleobase in the structures of EH.S, E.S, EH.TS, and E.TS. In the solvated enzyme, Tyr229, which is a member of the hydrogen bonding network inosine O2'.Asp14.His241.Tyr229.inosine N7, serves as a proton source to the leaving nucleobase. The loss of significant activity of His241Ala mutant is shown to be related to the disruption of the above hydrogen bonded network and the distancing of Tyr229 from inosine N7. The structures of the enzyme complexes with substrate or TS are not visibly altered on protonation of His241, a most unusual outcome. The bell-shaped pH dependence upon pK(app)'s of 7.1 and 9.1 may be attributed to the necessity of the dissociation of Asp10 or Asp15 and the acid form of Tyr229, respectively. In TS, the residue Ile81 migrated closer, whereas Arg233 moved away from the nucleobase. The probability of ribooxocarbenium ion stabilization by Asn168 and Asp14 is discussed. The Asp14-CO(2)(-) is hydrogen bonded to the ribose 2'-OH for 96% of the MD simulation time. Nucleophilic addition of water138 to ribooxocarbenium ion is suggested to be assisted by the proton shuttle from water138 --> Asp10 --> Asp15 --> water pool. An anticorrelation motion between Tyr229-OH and Asn168-OD1 in EH.S and E.S is observed. The relationship of this anticorrelated motion to mechanism, if any, deserves further exploration, perhaps the formation of a near attack conformation.  相似文献   

2.
The mechanism of bacterial methanol dehydrogenase involves hydride equivalent transfer from substrate to the ortho-quinone PQQ to provide a C5-reduced intermediate that subsequently rearranges to the hydroquinone PQQH(2). We have studied the PQQ reduction by molecular dynamic (MD) simulations in aqueous solution. Among the five simulated structures, either Asp297 or Glu171 or both are ionized. Reasonable structures are obtained only when both carboxyl groups are ionized. This is not unexpected since the kinetic pH optimum is 9.0. In the structure of the enzyme.PQQ.HOCH(3) complex, the hydrogen bonded Glu171-CO(2)(-).H-OCH(3) is in a position to act as a general base catalyst for hydride equivalent transfer to C5 of PQQ. We thus suggest that Glu171 plays the role of general base catalyst in PQQ reduction rather than Asp297 as previously suggested. The reduction is assisted by Arg324, which hydrogen bonds to the ortho-quinone moiety of PQQ. The rearrangement of the C5-reduced intermediate to provide hydroquinone PQQH(2) is also assisted by proton abstraction by Glu171-CO(2)(-) and the continuous hydrogen bonding of Arg324 throughout the entire reaction. These features as well as the mapping of the channel for substrate and water into the active site entrance are the observations of major importance.  相似文献   

3.
The mechanism of hydrolysis of the nitrile (N-acetyl-phenylalanyl-2-amino-propionitrile, I) catalyzed by Gln19Glu mutant of papain has been studied by nanosecond molecular dynamics (MD) simulations. MD simulations of the complex of mutant enzyme with I and of mutant enzyme covalently attached to both neutral (II) and protonated (III) thioimidate intermediates were performed. An MD simulation with the wild-type enzyme.I complex was undertaken as a reference. The ion pair between protonated His159 and thiolate of Cys25 is coplanar, and the hydrogen bonding interaction S(-)(25).HD1-ND1(159) is observed throughout MD simulation of the mutant enzyme.I complex. Such a sustained hydrogen bond is absent in nitrile-bound wild-type papain due to the flexibility of the imidazole ring of His159. The nature of the residue at position 19 plays a critical role in the hydrolysis of the covalent thioimidate intermediate. When position 19 represents Glu, the imidazolium ion of His159-ND1(+).Cys25-S(-) ion pair is distant, on average, from the nitrile nitrogen of substrate I. Near attack conformers (NACs) have been identified in which His159-ImH(+) is positioned to initiate a general acid-catalyzed addition of Cys-S(-) to nitrile. Though Glu19-CO(2)H is distant from nitrile nitrogen in the mutant.I structure, MD simulations of the mutant.II covalent adduct finds Glu19-CO(2)H hydrogen bonded to the thioimide nitrogen of II. This hydrogen bonded species is much less stable than the hydrogen bonded Glu19-CO(2)(-) with mutant-bound protonated thioimidate (III). This observation supports Glu19-CO(2)H general acid catalysis of the formation of mutant.III. This is the commitment step in the Gln19Glu mutant catalysis of nitrile hydrolysis.  相似文献   

4.
One of the mechanisms proposed for methanol oxidation by methanol dehydrogenase (MDH) involves a hydride transfer to the quinone carbonyl carbon C5 of 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]-quinoline-4,5-dione (PQQ), initiated by abstraction of a proton from the substrate methanol by a general base. Molecular dynamics studies are performed on MDH-bound to the C5 reduced intermediate (C5RI) of PQQ, for 3 ns. The structural features of the MD and X-ray structures are compared. An interesting feature observed during simulations is the strong hydrogen bond between oxyanion O5 of C5RI and Asp297-CO2H in the active site. Asp297-CO2 is suggested to be the general-base catalyst for removing the hydroxyl proton of methanol in concert with the hydride ion transfer from the putative methoxide to C5 carbonyl of PQQ. The formed Asp297-CO2H acts as the required proton source for the immediate product. Anticorreleated motions observed in the MD structure are not across the active site to influence the reaction mechanism of MDH.  相似文献   

5.
Molecular dynamics simulation of the Michaelis complex, phospho‐enzyme intermediate, and the wild‐type and C12S mutant have been carried out to examine hydrogen‐bonding interactions in the active site of the bovine low molecular weight protein‐tyrosine phosphatase (BPTP). It was found that the Sγ atom of the nucleophilic residue Cys‐12 is ideally located at a position opposite from the phenylphosphate dianion for an inline nucleophilic substitution reaction. In addition, electrostatic and hydrogen‐bonding interactions from the backbone amide groups of the phosphate‐binding loop strongly stabilize the thiolate anion, making Cys‐12 ionized in the active site. In the phospho‐enzyme intermediate, three water molecules are found to form strong hydrogen bonds with the phosphate group. In addition, another water molecule can be identified to form bridging hydrogen bonds between the phosphate group and Asp‐129, which may act as the nucleophile in the subsequent phosphate hydrolysis reaction, with Asp‐129 serving as a general base. The structural difference at the active site between the wild‐type and C12S mutant has been examined. It was found that the alkoxide anion is significantly shifted toward one side of the phosphate binding loop, away from the optimal position enjoyed by the thiolate anion of the wild‐type enzyme in an SN2 process. This, coupled with the high pKa value of an alcoholic residue, makes the C12S mutant catalytically inactive. These molecular dynamics simulations provided details of hydrogen bonding interactions in the active site of BPTP, and a structural basis for further studies using combined quantum mechanical and molecular mechanical potential to model the entire dephosphorylation reaction by BPTP. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1192–1203, 2000  相似文献   

6.
Molecular dynamics simulations have been performed to gain insights into the catalytic mechanism of the hydrolysis of epoxides to vicinal diols by soluble epoxide hydrolase (sEH). The binding of a substrate, 1S,2S-trans-methylstyrene oxide, was studied in two conformations in the active site of the enzyme. It was found that only one is likely to be found in the active enzyme. In the preferred conformation the phenyl group of the substrate is pi-sandwiched between two aromatic residues, Tyr381 and His523, whereas the other conformation is pi-stacked with only one aromatic residue, Trp334. Two simulations were carried out to 1 ns for each conformation to evaluate the protonation state of active site residue His523. It was found that a protonated histidine is essential for keeping the active site from being disrupted. Long time scale, 4 ns, molecular dynamics simulation was done for the structure with the most likely combination of binding conformation and protonation state of His523. Near Attack Conformers (NACs) are present 5.3% of the time and nucleophilic attack on either epoxide carbon atom, approximately 75% on C(1) and approximately 25% on C(2), is found. A maximum of one hydrogen bond between the epoxide oxygen and either of the active site tyrosines, Tyr465 and Tyr381, is present, in agreement with experimental mutagenesis results that reveal a slight loss in activity if one tyrosine is mutated and essential loss of all activity upon double mutation of the two tyrosines in question. It was found that a hydrogen bond from Tyr465 to the substrate oxygen is essential for controlling the regioselectivity of the reaction. Furthermore, a relationship between the presence of this hydrogen bond and the separation of reactants was found. Two groups of amino acid segments were identified each as moving collectively. Furthermore, an overall anti-correlation was found between the movements of these two individually collectively moving groups, made up by parts of the cap-region, including the two tyrosines, and the site of the catalytic triad, respectively. This overall anti-correlated collective domain motion is, perhaps, involved in the conversion of E.NAC to E.TS.  相似文献   

7.
The biological dehalogenation of fluoroacetate carried out by fluoroacetate dehalogenase is discussed by using quantum mechanical/molecular mechanical (QM/MM) calculations for a whole‐enzyme model of 10 800 atoms. Substrate fluoroacetate is anchored by a hydrogen‐bonding network with water molecules and the surrounding amino acid residues of Arg105, Arg108, His149, Trp150, and Tyr212 in the active site in a similar way to haloalkane dehalogenase. Asp104 is likely to act as a nucleophile to attack the α‐carbon of fluoroacetate, resulting in the formation of an ester intermediate, which is subsequently hydrolyzed by the nucleophilic attack of a water molecule to the carbonyl carbon atom. The cleavage of the strong C? F bond is greatly facilitated by the hydrogen‐bonding interactions between the leaving fluorine atom and the three amino acid residues of His149, Trp150, and Tyr212. The hydrolysis of the ester intermediate is initiated by a proton transfer from the water molecule to His271 and by the simultaneous nucleophilic attack of the water molecule. The transition state and produced tetrahedral intermediate are stabilized by Asp128 and the oxyanion hole composed of Phe34 and Arg105.  相似文献   

8.
基于54T团簇模型, 采用ONIOM分层计算方法, 研究了1-己烯在ZSM-5分子筛上进行顺式双键异构的反应机理. 计算结果表明, 1-己烯的顺式双键异构反应通过只有分子筛Brønsted酸部分起作用的机理进行. 首先, 1-己烯与分子筛的Brønsted酸性位形成π配位复合物. 接着, 酸质子发生迁移使1-己烯的双键端基碳原子被质子化, 同时双键的另一碳原子与失去质子的Brønsted酸羟基的氧原子成键, 形成稳定的烷氧基中间体. 然后, 烷氧基中间体中的C―O共价键被打断, 同时Brønsted酸羟基的氧原子从C6H13基团提取一个氢原子还原分子筛的酸性位, 并且生成cis-2-己烯. 这一反应路径与借助于分子筛活性位的酸-碱双功能性质的反应路径是相互竞争的. 计算得到的表观活化能是59.37 kJ·mol-1, 该值与实验值非常接近. 这一结果合理解释了双键异构过程中的能量特征, 并且扩展了对分子筛活性位本质的理解.  相似文献   

9.
Class Ia ribonucleotide reductase subunit R2 contains a diiron active site. In this paper, active-site models for the intermediate X-Trp48(?+) and X-Tyr122(?), the active Fe(III)Fe(III)-Tyr122(?), and the met Fe(III)Fe(III) states of Escherichia coli R2 are studied, using broken-symmetry density functional theory incorporated with the conductor-like screening solvation model. Different structural isomers and different protonation states have been explored. Calculated geometric, energetic, Mo?ssbauer, hyperfine, and redox properties are compared with available experimental data. Feasible detailed structures of these intermediate and active states are proposed. Asp84 and Trp48 are most likely the main contributing residues to the result that the transient Fe(IV)Fe(IV) state is not observed in wild-type class Ia E. coli R2. Asp84 is proposed to serve as a proton-transfer conduit between the diiron cluster and Tyr122 in both the tyrosine radical activation pathway and the first steps of the catalytic proton-coupled electron-transfer pathway. Proton-coupled and simple redox potential calculations show that the kinetic control of proton transfer to Tyr122(?) plays a critical role in preventing reduction from the active Fe(III)Fe(III)-Tyr122(?) state to the met state, which is potentially the reason why Tyr122(?) in the active state can be stable over a very long period.  相似文献   

10.
The catalytic mechanism of Bacillus subtilis guanine deaminase (bGD), a Zn metalloenzyme, has been investigated by a combination of quantum mechanical calculations using the multilayered ONIOM method and molecular dynamics simulations. In contrast to a previously proposed catalytic mechanism, which requires the bound guanine to assume a rare tautomeric state, the ONIOM calculations showed that the active-site residues of the enzyme do not affect the tautomeric state of guanine, and consequently the bound guanine is a tautomer that is the most abundant in aqueous solution. Two residues, Glutamate 55 and Aspartate 114, were found to play important roles in proton shuttling in the reaction. The proposed reaction path is initiated by proton transfer from a Zn-bound water to protonate Asp114. This process may be quite complex and rather dynamic in nature, as revealed by the molecular dynamics (MD) simulations, whereby another water may bridge the Zn-bound water and Asp114, which then is eliminated by positioning of guanine in the active site. The binding of guanine stabilizes protonated Asp114 by hydrogen bond formation. Asp114 can then transfer its proton to the N3 of the bound guanine, facilitating the nucleophilic attack on C2 of the guanine by the Zn-bound hydroxide to form a tetrahedral intermediate. This occurs with a rather low barrier. Glu55 then transfers a proton from the Zn-hydroxide to the amino group of the reaction intermediate and, at this point, the C2-N2 bond has lengthened by 0.2 A compared to guanine, making C2-N2 bond cleavage more facile. The C2-N2 bond breaks forming ammonia, with an energy barrier of approximately 8.8 kcal/mol. Ammonia leaves the active site, and xanthine is freed by the cleavage of the Zn-O2 bond, with a barrier approximately 8.4 kcal/mol. Along this reaction path, the highest barrier comes from C2-N2 bond cleavage, while the barrier from the cleavage of the Zn-O2 bond is slightly smaller. The Zn-O2 bond can be broken without the assistance of water during the release of xanthine.  相似文献   

11.
To investigate the molecular details of the phosphoryl-transfer mechanism catalyzed by cAMP-dependent protein kinase, we performed quantum mechanical (QM) calculations on a cluster model of the active site and molecular dynamics (MD) simulations of a ternary complex of the protein with Mg(2)ATP and a 20-residue peptide substrate. Overall, our theoretical results confirm the participation of the conserved aspartic acid, Asp(166), as an acid/base catalyst in the reaction mechanism catalyzed by protein kinases. The MD simulation shows that the contact between the nucleophilic serine side chain and the carboxylate group of Asp(166) is short and dynamically stable, whereas the QM study indicates that an Asp(166)-assisted pathway is structurally and energetically feasible and is in agreement with previous experimental results.  相似文献   

12.
The present study aimed to identify the prospective inhibitors of MurD, a cytoplasmic enzyme that catalyzes the addition of d-glutamate to the UDP-N-acetylmuramoyl-l-alanine nucleotide precursor in Mycobacterium tuberculosis (MTB), using virtual screening, docking studies, pharmacokinetic analysis, Molecular Dynamic (MD) simulation, and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The three dimensional (3D) structure was determined based on the homology technique using a template from Streptococcus agalactiae. The modeled structure had three binding sites, namely; substrate binding site (Val18, Thr19, Asp39, Asp40, Gly75, Asn147, Gln171 and His192), the ATP binding site (Gly123, Lys124, Thr125, Thr126, Glu166, Asp283, and Arg314) and the glutamic acid binding site (Arg382, Ser463, and Tyr470). These residues mentioned above play a critical role in the catalytic activity of the enzyme, and their inhibition could serve as a stumbling block to the normal function of the enzyme. A total of 10,344 obtained from virtual screened of Zinc and PubChem databases. These compounds further screened for Lipinski rule of five, docking studies and pharmacokinetic analysis. Four compounds with good binding energies (ZINC11881196 = −10.33 kcal/mol, ZINC12247644 = −8.90 kcal/mol, ZINC14995379 =−8.42 kcal/mol, and PubChem6185 = −8.20 kcal/mol), better than the binding energies of the ATP (−2.31 kcal/mol) and the ligand with known IC50, Aminothiazole (−7.11 kcal/mol) were selected for the MD simulation and MM-GBSA analyses. The result of the analyses showed that all the four ligands formed a stable complex and had the binding free energies better than the binding energy of ATP. Therefore, these ligands considered as suitable prospective inhibitors of the MurD after experimental validation.  相似文献   

13.
In the present DFT study, the catalytic mechanism of H2O2 formation in the oxidative half-reaction of NiSOD, E-Ni(II) + O2- + 2H+ --> E-Ni(III) + H2O2, has been investigated. The main objective of this study is to investigate the source of two protons required in this half-reaction. The proposed mechanism consists of two steps: superoxide coordination and H2O2 formation. The effect of protonation of Cys6 and the proton donating roles of side chains (S) and backbones (B) of His1, Asp3, Cys6, and Tyr9 residues in these two steps have been studied in detail. For protonated Cys6, superoxide binding generates a Ni(III)-O2H species in a process that is exothermic by 17.4 kcal/mol (in protein environment using the continuum model). From the Ni(III)-O2H species, H2O2 formation occurs through a proton donation by His1 via Tyr9, which relative to the resting position of the enzyme is exothermic by 4.9 kcal/mol. In this pathway, a proton donating role of His1 residue is proposed. However, for unprotonated Cys6, a Ni(II)-O2- species is generated in a process that is exothermic by 11.3 kcal/mol. From the Ni(II)-O2- species, the only feasible pathway for H2O2 formation is through donation of protons by the Tyr9(S)-Asp3(S) pair. The results discussed in this study elucidate the role of the active site residues in the catalytic cycle and provide intricate details of the complex functioning of this enzyme.  相似文献   

14.
15.
The reactions of hydrogen atoms with enkephalins and related peptides have been investigated by radiolytic methods in aqueous solutions and lipid vesicle suspensions. Pulse radiolysis experiments indicate that methionine residue (Met) is the main target. In Met-enkephalin (Tyr-Gly-Gly-Phe-Met) the attack of the hydrogen atom occurs to about 50 % on Met with formation of methanethiyl radical. The remaining percentage is divided roughly evenly between Tyr and Phe. With Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) the site of attack is limited to Tyr and Phe. Using a peptide-liposome (that is, 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles) model, the cis-trans isomerization of phospholipids could be detected due to the catalytic action of thiyl radicals. The radiation chemical yields of the H(.) and, consequently of CH(3)S(.) radical, was modulated by the experimental conditions and the nature of peptide. Large amounts of trans lipids observed in phosphate buffer vesicle suspensions indicated the efficient role of double-bond isomerization as marker of Met-containing peptide damage.  相似文献   

16.
Hybrid density functional quantum mechanical calculations were used to study the strength of the hydrogen bond between His(57) N(delta)(1) and Asp(102) O(delta)(1) in chymotrypsin and how it changes along the reaction coordinate. Comparison of experimental shifts with the results of chemical shift calculations on a variety of small molecules, including species containing very strong hydrogen bonds, has validated the overall approach and provided the means for calibrating and correcting the calculated values. Models of the active site of chymotrypsin in its resting state and tetrahedral intermediate state were derived from high-resolution X-ray structures. The distance between His(57) N(delta)(1) and Asp(102) O(delta)(1) in each model was varied between 2.77 A (weak hydrogen bond) and 2.50 A (extremely strong hydrogen bond), and the one-dimensional potential energy surface of the hydrogen-bonded proton (or deuteron/triton) was determined. The zero-point energy, probability distribution, and chemical shift were determined for each distance. Calculated values for NMR chemical shifts, NMR chemical shift differences between (1)H and (3)H, and (2)H/(1)H fractionation factors were compared with published experimental values. Energies provided by the calculations indicated that the hydrogen bond between His(57) N(delta)(1) and Asp(102) O(delta)(1) in the chymotrypsin active site increases in strength by 11 kcal mol(-)(1) in going from the resting state of the enzyme to the tetrahedral intermediate state. This result confirms the hypothesis that the strengthened hydrogen bond plays an important role in lowering the energy of the transition state and, hence, in the catalytic efficiency of the enzyme. Models of the transition state that best fit the experimental data are consistent with a "strong" hydrogen bond between His(57) N(delta)(1) and Asp(102) O(delta)(1) but apparently not a "low-barrier" or "very strong" hydrogen bond.  相似文献   

17.
Phosphoglucose isomerase (PGI), which catalyzes the reversible interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), is represented by two evolutionarily distinct protein families. One is a conventional type in eubacteria, eukaryotes, and a few archaea, where the active sites contain no metal ions and reactions proceed via the cis-enediol intermediate mechanism. The second type, found recently in euryarchaeota species, belongs to metalloenzymes, and controversies exist over whether the catalyzed isomerization occurs via the cis-enediol intermediate mechanism or a hydride shift mechanism. We studied the reversible interconversion of the open-chain form G6P and F6P catalyzed by the metal-containing Pyrococcus furiosus PGI by performing QM(B3LYP)/MM single-point optimizations and QM(PM3)/MM molecular dynamics simulations. A zwitterion intermediate-based mechanism, which involves both proton and hydride transfers, has been put forward. The presence of the key zwitterionic intermediate in this mechanism can effectively reconcile the controversial mechanisms and rationalize the enzymatic reaction. Computations show that the overall isomerization process is quite facile, both dynamically and thermodynamically. The crucial roles of conserved residues have been elucidated on the basis of computations on their alanine mutants. In particular, Tyr152 pushes the H1 transfer through a hydride-shift mechanism and dominates the stereochemistry selectivity of the hydrogen transfer. The rest of the conserved residues basically maintain the substrate in the near-attack reactive conformation and mediate the proton transfer. Although Zn(2+) is not directly involved in the reaction, the metal ion as a structural anchor constructs a hydrogen bond wire to connect the substrate to the outer region, providing a potential channel for hydrogen exchange between the substrate and solvent.  相似文献   

18.
We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP : AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1–2 kcal ⋅ mol−1. Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal ⋅ mol−1 and −6.3 to +3.8 kcal ⋅ mol−1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.  相似文献   

19.
Ab initio and density functional calculations have been performed to gain a better understanding of the epoxide ring-opening reaction catalyzed by epoxide hydrolase. The S(N)2 reaction of acetate with 1S,2S-trans-2-methylstyrene oxide to provide the corresponding diol acetate ester was studied with and without general-acid catalysis. MP2 and DFT (B3LYP) calculations predict, for the noncatalyzed reaction, a central barrier of approximately 20-21 kcal/mol separating the reactants from products depending on which carbon center in the epoxide is undergoing attack. From these gas-phase reactions the immediate alkoxide products are not energetically far below their associated transition states such that the reaction is predicted to be endothermic. Inclusion of aqueous solvation effects via a polarizable continuum model predicts the activation barrier to increase by almost 10 kcal/mol due to the solvation of the acetate ion nucleophile. The activation barrier for the epoxide ring-opening reaction is reduced to approximately 10 kcal/mol when phenol, as the general-acid catalyst, is included in the gas-phase calculations. This is due to the immediate product being the neutral ester rather than the corresponding alkoxide. The transition state in the general-acid-catalyzed reaction is earlier than that for the noncatalyzed reaction and the reaction is highly exothermic. Molecular mechanics calculations of 1S,2S-trans-2-methylstyrene oxide in the active site of murine epoxide hydrolase show two possible binding conformations. Both conformers have the epoxide oxygen forming hydrogen bonds with the acidic hydrogens of the catalytic tyrosines (Tyr381 and Tyr465). These two conformations likely lead to different products since the nucleophile (Asp333-CO(2)(-)) is positioned to react with either carbon center in the epoxide.  相似文献   

20.
The seven transmembrane helices G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of signaling proteins found in humans. Homology modeling, molecular docking, and molecular dynamics (MD) simulation were carried out to construct a reliable model for CCR1 as one of the GPCRs and to explore the structural features and the binding mechanism of BX471 as one of the most potent CCR1 inhibitors. In this study, BX471 has been docked into the active site of the CCR1 protein. After docking, one 20 ns MD simulation was performed on the CCR1-ligand complex to explore effects of the presence of lipid membrane in the vicinity of the CCR1-ligand complex. At the end of the MD simulation, a change in the position and orientation of the ligand in the binding site was observed. This important observation indicated that the application of MD simulation after docking of ligands is useful. Explorative runs of molecular dynamics simulation on the receptor-ligand complex revealed that except for Phe85, Phe112, Tyr113, and Ile259, the rest of the residues in the active site determined by docking are changed. The results obtained are in good agreement with most of the experimental data reported by others. Our results show that molecular modeling and rational drug design for chemokine targets is a possible approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号