首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-amplitude tunneling in vinyl radical over a C2v planar transition state involves CCH bending excitation coupled to all other internal coordinates, resulting in a significant dependence of barrier height and shape on vibrational degrees of freedom at the zero-point level. An ab initio potential surface for vinyl radical has been calculated at the CCSD(T) level (AVnZ; n=2, 3, 4, 5) for vibrationally adiabatic 1D motion along the planar CCH bending tunneling coordinate, extrapolated to the complete basis set (CBS) limit and corrected for anharmonic zero-point effects. The polyatomic reduced moment of inertia is calculated explicitly as a function of tunneling coordinate, with eigenvalues and tunneling splittings obtained from numerical solution of the resulting 1D Schr?dinger equation. Linear scaling of the CBS potential to match predicted and observed tunneling splittings empirically yields an adiabatic barrier height of DeltaEadiab=1696(20) cm(-1) which, when corrected for zero-point energy contributions, translates into an effective barrier of DeltaEeff=1602(20) cm(-1) consistent with estimates (DeltaE=1580(100) cm(-1)) by Tanaka and coworkers [J. Chem. Phys., 2004, 120, 3604-3618]. These zero-point-corrected potential surfaces are used to predict tunneling dynamics in vibrationally excited states of vinyl radical, providing strong support for previous jet-cooled high-resolution infrared studies [Dong et al., J. Phys. Chem. A, 2006, 110, 3059-3070] in the symmetric CH2 stretch mode.  相似文献   

2.
The positron-electron correlation-polarization potential model is used to calculate annihilation spectra of carbon disulfide and benzene. We assume that the positron is captured in the vibrationally excited states of the target molecule through vibrational Feshbach resonances. Using the standard normal mode representation, we calculated the resonance energies and widths for each vibrational mode. The resonance widths were calculated with Fermi's Golden Rule approximation, where the time-dependent wave packet approach has been applied. We found that vibrational resonances of infrared-active modes play a dominant role in resonant annihilation; however, infrared-inactive modes also contribute to the annihilation spectrum through polarizability changes along normal mode coordinates.  相似文献   

3.
Based on the Cartesian Reaction Surface framework we construct a four-dimensional potential for the tropolone derivative 3,7-dichlorotropolone, a molecule with an intramolecular O-H...O hydrogen bond. The reduced configuration space involves the in-plane hydrogen atom coordinates, a symmetric O-O vibrational mode, and an antisymmetric mode related to deformations of the seven-membered ring. The system is characterized in terms of quantum mechanical computations of the low-lying eigenstates as well as a classical and semiclassical analysis of spectra obtained via Fourier transforming autocorrelation functions. For the semiclassical analysis we utilize the amplitude-free correlation function method [K. Hotta and K. Takatsuka, J. Phys. A 36, 4785 (2003)]. Our results demonstrate substantial anharmonic couplings leading to highly correlated wave functions even at moderate energies. Furthermore, the importance of dynamical tunneling in tropolone is suggested since many low-lying states--including the ground state--lie above the classical saddle point but nevertheless appear as split pairs.  相似文献   

4.
The microwave spectra of cyclopropanethiol, C(3)H(5)SH, and one deuterated species C(3)H(5)SD, have been investigated in the 20 - 80 GHz frequency range. The spectra of the ground vibrational state and of three vibrationally excited states of the parent species of a conformer which has a synclinal ("gauche") arrangement for the H-C-S-H chain of atoms, was assigned. The H-C-S-H dihedral angle is 76(5)° from synperiplanar (0°). The b-type transitions of the ground and of the vibrationally excited states of the parent species were split into two components, which is assumed to arise from tunneling of the proton of the thiol group between two equivalent synclinal potential wells. No splitting was resolved in the spectrum of C(3)H(5)SD. The tunneling frequency of the ground vibrational state of C(3)H(5)SH is 1.664(22) MHz. The tunneling frequency of the first excited-state of the C-S torsion is 52.330(44) MHz, whereas this frequency is 26.43(13) and 3.286(61) MHz, respectively, for the first excited states of the two lowest bending vibrations. The dipole moment of the ground vibrational state of the parent species is μ(a) = 4.09(5), μ(b) = 2.83(11), μ(c) = 0.89(32), and μ(tot) = 5.06(16) × 10(-30) C m. The microwave study has been augmented by high-level density functional and ab initio quantum chemical calculations.  相似文献   

5.
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S(N)2) reaction Cl(-)+CH(3)Br-->ClCH(3)+Br(-) were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.  相似文献   

6.
An approach to the calculation of Franck–Condon factors in curvilinear coordinates is outlined. The approach is based on curvilinear normal coordinates, which allows for an easy extension of Duschinsky’s transformation to the case of curvilinear coordinates, and on the power series expansion of the kinetic energy operator. Its usefulness in the case of molecules undergoing large displacements of their equilibrium nuclear configurations upon excitation is then demonstrated by an application to the vibrational structure of the photoelectron spectrum of ammonia, using an anharmonic potential only for the symmetric stretching and bending coordinates of the radical cation.  相似文献   

7.
The first α,β-unsaturated isoselenocyanate, vinyl isoselenocyanate (H(2)C═CHNCSe), has been synthesized, and its microwave spectrum has been investigated in the 11.5-77.0 GHz spectral range. The microwave work was augmented by quantum chemical calculations using four different methods, namely, CCSD(T), CCSD, B3LYP, and M062X, with the cc-pVTZ basis set. It is generally assumed that two rotamers having the isoselenocyanide group in an antiperiplanar or a synperiplanar position can exist for this compound. However, these four methods all predict that there is only one rotameric form of the molecule, namely, the antiperiplanar form. The CNC angle of the antiperiplanar rotamer is calculated to vary from 151° to 170° depending on the quantum chemical methodology. CCSD(T) and B3LYP potential functions of the in-plane CNC bending vibrations were calculated. These functions have one shallow minimum corresponding to the antiperiplanar form. The spectra of the ground and one vibrationally excited state of this rotamer were assigned. Spectral searches for the synperiplanar form were performed but were not successful, so this form must have a relatively high energy, if it exists at all. The vibrationally excited state is presumably the lowest in-plane bending vibration of the CNC angle. Relative intensity measurements yielded a very low frequency of 18(25) cm(-1) for this vibration. The large-amplitude vibration of this mode suggests that this compound should rather be regarded as having a quasilinear CNCSe link of atoms than a rigid, bent antiperiplanar form.  相似文献   

8.
9.
Calculations are reported for the symmetric bending and stretching vibrational states of H3O+ and D3O+ including coupling between these two modes. The calculations were carried out by using a potential surface calculated by the SCF CI method and expressed in terms of symmetric internal coordinates. The transition energy of the ν2 (1? ← 0+) inversion mode is found to be 985 cm?1, which is comparable to the experimental value of 954.417 cm?1 observed by Haese and Oka. The calculated inversion doubling of the lowest state is 51 cm?1.  相似文献   

10.
A Monte Carlo path integral method to study the coupling between the rotation and bending degrees of freedom for water is developed. It is demonstrated that soft internal degrees of freedom that are not stretching in nature can be mapped with stereographic projection coordinates. For water, the bending coordinate is orthogonal to the stereographic projection coordinates used to map its orientation. Methods are developed to compute the classical and quantum Jacobian terms so that the proper infinitely stiff spring constant limit is recovered in the classical limit, and so that the nonconstant nature of the Riemann Cartan curvature scalar is properly accounted in the quantum simulations. The theory is used to investigate the effects of the geometric coupling between the bending and the rotating degrees of freedom for the water monomer in an external field in the 250 to 500 K range. We detect no evidence of geometric coupling between the bending degree of freedom and the orientations.  相似文献   

11.
In this Comment we present quantum mechanical absorption spectra of the Hartley band originating from the four vibrationally excited levels of the ground electronic state. The calculations are performed using the diabatic B-state potential energy surface and the transition dipole moment vector constructed from the ab initio data of the title paper. The calculated spectra are multimodal (for the symmetric stretch pre-excitation) and strongly structured (for the symmetric stretch and bending pre-excitations). These results agree with the previous theoretical analysis and with the predictions of a simple model based on the reflection principle, but contradict the findings of Balo?tcha amd Balint-Kurti thus questioning the accuracy of their calculations.  相似文献   

12.
The first high resolution spectroscopic data for jet cooled H2DO+ are reported, specifically via infrared laser direct absorption in the OH stretching region with a slit supersonic jet discharge source. Transitions sampling upper (0-) and lower (0+) tunneling states for both symmetric (nu1+ <-- 0+, nu1- <-- 0-, and nu1- <-- 0+) and antisymmetric (nu3+ <-- 0+ and nu3- <-- 0-) OH stretching bands are observed, where +/- refers to wave function reflection symmetry with respect to the planar umbrella mode transition state. The spectra can be well fitted to a Watson asymmetric top Hamiltonian, revealing band origins and rotational constants for benchmark comparison with high-level ab initio theory. Of particular importance are detection and assignment of the relatively weak band (nu1- <-- 0+) that crosses the inversion tunneling gap, which is optically forbidden in H3O+ or D3O+, but weakly allowed in H2DO+ by lowering of the tunneling transition state symmetry from D(3h) to C(2v). In conjunction with other H2DO+ bands, this permits determination of the tunneling splittings to within spectroscopic precision for each of the ground [40.518(10) cm(-1)], nu1 = 1 [32.666(6) cm(-1)], and nu3 = 1 [25.399(11) cm(-1)] states. A one-dimensional zero-point energy corrected potential along the tunneling coordinate is constructed from high-level ab initio CCSD(T) calculations (AVnZ, n = 3,4,5) and extrapolated to the complete basis set limit to extract tunneling splittings via a vibrationally adiabatic treatment. Perturbative scaling of the potential to match splittings for all four isotopomers permits an experimental estimate of DeltaV0 = 652.9(6) cm(-1) for the tunneling barrier, in good agreement with full six-dimensional ab initio results of Rajamaki, Miani, and Halonen (RMH) [J. Chem. Phys. 118, 10929 (2003)]. (DeltaV0 (RMH) = 650 cm(-1)). The 30%-50% decrease in tunneling splitting observed upon nu1 and nu3 vibrational excitations arises from an increase in OH stretch frequencies at the planar transition state, highlighting the transition between sp2 and sp3 hybridizations of the OHD bonds as a function of inversion bending angle.  相似文献   

13.
14.
An iterative block Lanczos-type diagonalization scheme utilizing the state-averaged multi-configurational time-dependent Hartree (MCTDH) approach is introduced. Combining propagation in real and imaginary time and using a set of initial seed wavefunctions corresponding to excitations via the different components of the dipole moment vector, the scheme can favorably be used to selectively compute vibrational states which show high intensities in vibrational absorption spectra. Tunneling splitted vibrational states in double well systems can be described particularly efficient employing an increased set of seed wavefunctions which includes symmetric and anti-symmetric wavefunctions simultaneously. The new approach is used to study the tunneling splittings of the vibrationally excited states of malonaldehyde. Full-dimensional multi-layer MCTDH calculations are performed and results for the tunneling splittings of several excited vibrational states can be obtained. The calculated tunneling splittings agree reasonably well with available experimental data. Order of magnitude differences between tunneling splittings of different vibrationally excited states are found and interpreted.  相似文献   

15.
As a special substance between isolated molecules and condensed phase, clusters have drawn more and more attention by theoreticians and experimentalists. The protonated rare gas cluster is one kind of simplest clusters, which can be looked on as the simplest solution composed of the simplest solute, proton, and the simplest solvent, rare gas. The study on such a system can help us to know more about the complex condensed matter. However, the information for the molecular properties of protonat…  相似文献   

16.
A simple and practical method for treating the non-adiabatic proton tunneling in 6-hydroxy-2-formylfulvene was used. A two dimensional potential energy surface function, which couples OH stretching and in-plane bending modes, has been constructed for motion of hydrogen by the aid of quantum mechanical calculations at MP2/6-31G** level for a fixed skeleton geometry. This potential was used for calculation of energy levels from which a tunneling splitting of 181±14 cm−1 was obtained in an excellent agreement with the experimental value of at least 150 cm−1. The calculated barrier height for these results was about 26–27 kJ/mol. This method also assigns a broad band at about 1740 cm−1 to the OH in-plane bending mode. The calculated hydrogen bond strength was estimated to be about 80 kJ/mol.  相似文献   

17.
The authors report a fully vibrationally resolved photoelectron spectroscopy investigation of a nonplanar molecule studied over a range of excitation energies. Experimental results for all four fundamental vibrational modes are presented. In each case significant non-Franck-Condon effects are seen. The vibrational branching ratio for the totally symmetric mode nu1+ is found to be strongly affected by resonant excitation in the SiF4+ (D2A1) photoionization channel. This is shown to be the result of two distinct shape resonances, which for the first time have been both confirmed by theoretical calculations. Vibrationally resolved Schwinger photoionization calculations are used to understand the vibronic coupling for the photoelectrons, both using ab initio and harmonic vibrational wave functions.  相似文献   

18.
The photodissociation of methyl iodide in the A band is studied by full-dimensional (9D) wave packet dynamics calculations using the multiconfigurational time-dependent Hartree approach. The potential energy surfaces employed are based on the diabatic potentials of Xie et al. [J. Phys. Chem. A 2000, 104, 1009] and the vertical excitation energy is taken from recent ab initio calculations [Alekseyev et al. J. Chem. Phys.2007, 126, 234102]. The absorption spectrum calculated for exclusively parallel excitation agrees well with the experimental spectrum of the A band. The electronic population dynamics is found to be strongly dependent on the motion in the torsional coordinate related to the H(3)-C-I bend, which presumably is an artifact of the diabatic model employed. The calculated fully product state-selected partial spectra can be interpreted based on the reflection principle and suggests strong coupling between the C-I stretching and the H(3)-C-I bending motions during the dissociation process. The computed rotational and vibrational product distributions typically reproduce the trends seen in the experiment. In agreement with experiment, a small but significant excitation of the total symmetric stretching and the asymmetric bending modes of the methyl fragment can be seen. In contrast, the umbrella mode of the methyl is found to be too highly excited in the calculated distributions.  相似文献   

19.
The intramolecular hydrogen bond in the enol-acethylacetone (ACAC) is investigated by performing reduced-dimensional quantum calculations. To analyze the shared proton vibrations, two sets of coordinates were employed: normal mode coordinates describing the motion in the vicinity of the most stable configuration, and internal coordinates accounting for the double minimum proton motion. It is proved that the extreme broadness of the OH-stretch band in ACAC is a consequence of the coexistence of two enol-ACAC structures: the global minimum and the transition state for rotation of the distal methyl group. Further, a ground-state tunneling splitting of 116 cm(-1) is found, and it is shown that the inclusion of the kinematic coupling is mandatory when treating large-amplitude proton motion. In the OH-stretch direction a splitting of 853 cm(-1) was predicted.  相似文献   

20.
Lorente N  Persson M 《Faraday discussions》2000,(117):277-90; discussion 331-45
We have performed a density functional study of the electronic structure, images and vibrationally inelastic tunneling in the scanning tunneling microscope and vibrational damping by excitation of electron-hole pairs of CO chemisorbed on the (111) and (100) faces of Cu. We find that the 2 pi* molecular orbital of CO turns into a broad resonance with parameters that differ significantly from those suggested by inverse and two-photon photoemission measurements. The calculated vibrational damping rate for the internal stretch mode and relative changes in tunneling conductance across vibrational thresholds are in agreement with experiment. The non-adiabatic electron-vibration coupling is well described by the Newn-Anderson model for the 2 pi*-derived resonance whereas this model is not able to describe the non-adiabatic coupling between the tunneling electrons and the vibration. We believe that this model misses an important mechanism for vibrational excitation in tunneling that involves the change of tunneling amplitude by deformation of the tails of the one-electron wavefunctions with vibrational coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号