首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let O n be the order-preserving transformation semigroup on X n . For an arbitrary integer r such that 1≤rn−2, we completely describe the maximal regular subsemibands of the semigroup K(n,r)={αO n :|im(α)|≤r}. We also formulate the cardinal number of such subsemigroups.  相似文献   

2.
Yi HONG  Wen Ge  CHEN 《数学学报(英文版)》2011,27(11):2269-2274
In this paper, we give the eigenvalues of the manifold Sp(n)/U(n). We prove that an eigenvalue λ s (f 2, f 2, …, f n ) of the Lie group Sp(n), corresponding to the representation with label (f 1, f 2, ..., f n ), is an eigenvalue of the manifold Sp(n)/U(n), if and only if f 1, f 2, …, f n are all even.  相似文献   

3.
Let k, n, and r be positive integers with k < n and \({r \leq \lfloor \frac{n}{k} \rfloor}\). We determine the facets of the r-stable n, k-hypersimplex. As a result, it turns out that the r-stable n, k-hypersimplex has exactly 2n facets for every \({r < \lfloor \frac{n}{k} \rfloor}\). We then utilize the equations of the facets to study when the r-stable hypersimplex is Gorenstein. For every k > 0 we identify an infinite collection of Gorenstein r-stable hypersimplices, consequently expanding the collection of r-stable hypersimplices known to have unimodal Ehrhart \({\delta}\)-vectors.  相似文献   

4.
We prove that if q = p h , p a prime, do not exist sets U í AG(n,q){U {\subseteq} AG(n,q)}, with |U| = q k and 1 < k < n, determining N directions where
\fracqk - 1p - 1 < N £ \fracq+32 q k-1+ qk-2 +...+q2 + q \frac{{q^k} - 1}{p - 1} < N \le \frac{q+3}{2} q ^{k-1}+ q^{k-2} +\dots+q{^2} + q  相似文献   

5.
For p > 0, the l n,p -generalized surface measure on the l n,p -unit sphere is studied and used for deriving a geometric measure representation for l n,p -symmetric distributions having a density.  相似文献   

6.
The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g ≥ 2 the order of this group is naturally bounded in terms of g due to a Riemann–Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.  相似文献   

7.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

8.
We generalize Green’s lemma and Green’s theorem for usual binary semigroups to (n,m)-semigroups, define and describe the regularity for an element of an (n,m)-semigroup, give some criteria for an element of an (n,m)-semigroup to be invertible, and further apply the invertibility for (n,m)-semigroups to (n,m)-groups and give some equivalent characterizations for (n,m)-groups. We establish Hosszú-Gluskin theorems for (n,m)-semigroups in two cases, as generalizations of the corresponding theorems for n-groups.  相似文献   

9.
We study the complex reflection groups G(r, p, n). By considering these groups as subgroups of the wreath products , and by using Clifford theory, we define combinatorial parameters and descent representations of G(r, p, n), previously known for classical Weyl groups. One of these parameters is the flag major index, which also has an important role in the decomposition of these representations into irreducibles. A Carlitz type identity relating the combinatorial parameters with the degrees of the group, is presented.  相似文献   

10.
Let s : S 2G(2, n) be a linearly full totally unramified non-degenerate holomorphic curve in a complex Grassmann manifold G(2, n), and let K(s) be its Gaussian curvature. It is proved that K(s) = \frac4n-2{K(s) = \frac{4}{n-2}} if K(s) satisfies K(s) 3 \frac4n-2{K(s) \geq \frac{4}{n-2}} or K(s) £ \frac4n-2 {K(s) \leq \frac{4}{n-2} } everywhere on S 2. In particular, K(s) = \frac4n-2{K(s) = \frac{4}{n-2}} if K(s) is constant.  相似文献   

11.
We consider the questions of lower semicontinuity and relaxation for the integral functionals satisfying the p(x)- and p(x, u)-growth conditions. Presently these functionals are actively studied in the theory of elliptic and parabolic problems and in the framework of the calculus of variations. The theory we present rests on the following results: the remarkable result of Kristensen on the characterization of homogeneous p-gradient Young measures by their summability; the earlier result of Zhang on approximating gradient Young measures with compact support; the result of Zhikov on the density in energy of regular functions for integrands with p(x)-growth; on the author’s approach to Young measures as measurable functions with values in a metric space whose metric has integral representation.  相似文献   

12.
A new class of G-Brauer algebras which generalizes signed Brauer algebras has been introduced. The structure and representations of such algebras have been studied.AMS Subject Classification: 16S99  相似文献   

13.
We consider an M/G/1 queue with the following form of customer impatience: an arriving customer balks or reneges when its virtual waiting time, i.e., the amount of work seen upon arrival, is larger than a certain random patience time. We consider the number of customers in the system, the maximum workload during a busy period, and the length of a busy period. We also briefly treat the analogous model in which any customer enters the system and leaves at the end of his patience time or at the end of his virtual sojourn time, whichever occurs first.  相似文献   

14.
Given , a compact abelian group G and a function , we identify the maximal (i.e. optimal) domain of the convolution operator (as an operator from Lp(G) to itself). This is the largest Banach function space (with order continuous norm) into which Lp(G) is embedded and to which has a continuous extension, still with values in Lp(G). Of course, the optimal domain depends on p and g. Whereas is compact, this is not always so for the extension of to its optimal domain. Several characterizations of precisely when this is the case are presented.  相似文献   

15.
The rank of a q-ary code C is the dimension of the subspace spanned by C. The kernel of a q-ary code C of length n can be defined as the set of all translations leaving C invariant. Some relations between the rank and the dimension of the kernel of q-ary 1-perfect codes, over as well as over the prime field , are established. Q-ary 1-perfect codes of length n=(qm − 1)/(q − 1) with different kernel dimensions using switching constructions are constructed and some upper and lower bounds for the dimension of the kernel, once the rank is given, are established.Communicated by: I.F. Blake  相似文献   

16.
In this paper, the Lp(Rn)-boundedness of the commutators generalized by BMO(Rn) function and the singular integral operator T with rough kernel Ω∈ Llog+ L(Sn-1) is proved by using the Bony's formula for the paraproduct of two functions.  相似文献   

17.
Let k be a field and E(n) be the 2 n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743–770]. E(n) is a triangular Hopf algebra with a family of triangular structures R M parameterized by symmetric matrices M in M n (k). In this paper, we study the Azumaya algebras in the braided monoidal category $ E_{(n)} \mathcal{M}^{R_M } $ E_{(n)} \mathcal{M}^{R_M } and obtain the structure theorems for Azumaya algebras in the category $ E_{(n)} \mathcal{M}^{R_M } $ E_{(n)} \mathcal{M}^{R_M } , where M is any symmetric n×n matrix over k.  相似文献   

18.
The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called(s,t,d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An(s,t,d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an(s,t,d)-bi-Koszul algebra is discussed. Based on it,the notion of strongly(s,t,d)-bi-Koszul algebras is raised and their homological properties are further discussed.  相似文献   

19.
In this paper we consider n-poised planar node sets, as well as more special ones, called G C n sets. For the latter sets each n-fundamental polynomial is a product of n linear factors as it always holds in the univariate case. A line ? is called k-node line for a node set \(\mathcal X\) if it passes through exactly k nodes. An (n + 1)-node line is called maximal line. In 1982 M. Gasca and J. I. Maeztu conjectured that every G C n set possesses necessarily a maximal line. Till now the conjecture is confirmed to be true for n ≤ 5. It is well-known that any maximal line M of \(\mathcal X\) is used by each node in \(\mathcal X\setminus M, \)meaning that it is a factor of the fundamental polynomial. In this paper we prove, in particular, that if the Gasca-Maeztu conjecture is true then any n-node line of G C n set \(\mathcal {X}\) is used either by exactly \(\binom {n}{2}\) nodes or by exactly \(\binom {n-1}{2}\) nodes. We prove also similar statements concerning n-node or (n ? 1)-node lines in more general n-poised sets. This is a new phenomenon in n-poised and G C n sets. At the end we present a conjecture concerning any k-node line.  相似文献   

20.
Granted the three integers n ≥ 2, r, and R, consider all ordered tuples of r elements of length at most R in the free group F n . Calculate the number of those tuples that generate in F n a rank r subgroup and divide it by the number of all tuples under study. As R → ∞, the limit of the ratio is known to exist and equal 1 (see [1]). We give a simple proof of this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号